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Humans reliably categorize configurations of facial actions into specific
emotion categories, leading some to argue that this process is invariant
between individuals and cultures. However, growing behavioral
evidence suggests that factors such as emotion-concept knowl-
edge may shape the way emotions are visually perceived, leading
to variability—rather than universality—in facial-emotion perception.
Understanding variability in emotion perception is only emerging,
and the neural basis of any impact from the structure of emotion-
concept knowledge remains unknown. In a neuroimaging study,
we used a representational similarity analysis (RSA) approach to
measure the correspondence between the conceptual, perceptual,
and neural representational structures of the six emotion categories
Anger, Disgust, Fear, Happiness, Sadness, and Surprise. We found
that subjects exhibited individual differences in their conceptual
structure of emotions, which predicted their own unique percep-
tual structure. When viewing faces, the representational structure
of multivoxel patterns in the right fusiform gyrus was significantly
predicted by a subject’s unique conceptual structure, even when
controlling for potential physical similarity in the faces themselves.
Finally, cross-cultural differences in emotion perception were also
observed, which could be explained by individual differences in
conceptual structure. Our results suggest that the representational
structure of emotion expressions in visual face-processing regions
may be shaped by idiosyncratic conceptual understanding of emotion
categories.

emotion perception | facial expressions | conceptual knowledge |
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Afundamental debate about human emotion concerns the
nature of emotion-concept knowledge and the manner in

which emotion concepts are involved in experiencing emotions
and perceiving them in other people. Classic theories of emotion
assume that emotion categories map onto biologically and psy-
chologically distinct states with specific behavioral and expressive
profiles (1, 2). Facial expressions in particular are typically as-
sumed to inherently signal specific emotions, triggering relatively
stable and accurate categorizations in human perceivers, including
those from different cultures, due to their high motivational
relevance. As such, this approach tends to minimize the possible
influence of top-down factors such as conceptual knowledge on
facial-emotion perception (3–5). A number of findings support
this idea by showing that perceivers often rapidly and reliably
classify configurations of facial actions into specific emotion
categories (3, 5–10).
This research has gone a long way in establishing that indi-

viduals show high agreement in their categorizations of specific
facial expressions, but the tasks used typically present stereo-
typed facial expressions to perceivers without consideration of
the context. Contrasting work demonstrates that emotion per-
ception is highly sensitive to visual and social contextual factors,
such as body posture (11, 12) and visual scenes (13, 14), suggesting
that facial-emotion perception cannot be fully understood from
sensitivity to facial cues alone (15–17). Accumulating evidence
suggests that an additional influence on emotion perception comes
from the internal context of the perceiver—that an individual’s

own conceptual associations with specific emotion categories may
be implicitly used to make sense of visual information conveyed by
the face, influencing the perceptual process (18–22). Thus, recent
theoretical accounts and computational models highlight the va-
riety of top-down conceptual, contextual, and associative factors
that may weigh in on visual processing before categorizations of
facial emotion stabilize (23–26).
These contrasting approaches to understanding emotion per-

ception touch on fundamental debates about the degree to which
visual perception is able to be influenced by more “cognitive”
resources, such as conceptual knowledge, in the first place (see
ref. 27 for a recent discussion). Classic views of emotion assume
that facial actions associated with particular emotions (e.g., a
scowling face for Anger) trigger an invariant perceptual process
that leads to recognition of Anger in an individual displaying
these facial actions and subsequent activation of Anger-related
conceptual knowledge (such as what actions that person is likely
to take next; refs. 1 and 28). This approach treats emotion concepts
as abstractions that come online at the end stage of a feed-forward
perceptual process. Alternative approaches view them as more
dynamic multimodal constructs with a functional role in re-
solving visual processing to rapidly predict and guide behavior
(23, 29–31). These recent approaches would assume that early
processing of facial cues associated with a given emotion would
trigger an interactive perceptual process that utilizes contextual
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cues, prior experiences, and conceptual knowledge to resolve
visual input (23–26, 32).
Existing evidence for conceptual knowledge influencing facial-

emotion perception comes from behavioral tasks that manipu-
late the presence or accessibility of emotion concepts, showing
that reduced access impairs emotion perception, while increased
access facilitates speed, accuracy, and memory in emotion-
perception tasks (19, 20, 33, 34). Additional research shows
that individuals with semantic dementia—who have dramatically
reduced access to emotion-concept knowledge—have an im-
paired ability to perceive distinct emotion categories from facial
expressions at all (21). These studies show that emotion-concept
knowledge is flexible enough that even briefly manipulating
emotion concepts can impact emotion perception in experimental
tasks. One possible implication of this work is that emotion-concept
knowledge is dynamic and flexible in general, such that idiosyncra-
sies in conceptual structure between individuals could differentially
shape emotion perception, leading to variability between individuals
in how emotions are perceived and categorized. Consistent with this
idea, emotion perception exhibits well-documented variability be-
tween social groups (35, 36) and cultures (37–42). It is possible that
such variability could be partly due to corresponding variability in
the conceptual structure of emotion.
Despite considerable interest in the role of conceptual

knowledge in facial-emotion perception, and its relationship with
cultural and individual variability in perceptions, the neural basis
of such a flexible influence remains unknown. In particular, while
behavioral studies have been valuable, questions remain as to
how deeply such conceptual impacts might manifest in perception.
Specifying the level of processing at which perceptual repre-
sentations reflect the influence of conceptual knowledge is a task
particularly well-suited for neuroimaging to help address. Multivoxel
pattern-analysis approaches to functional neuroimaging data, which
measure distributed patterns of activity across voxels that can isolate
different stimulus conditions, have shown that emotion categories
can be decoded from responses to facial expressions in regions such
as V1 (43), the posterior superior temporal sulcus (44), and the
fusiform gyrus (FG; refs. 45 and 46). In a study comparing facial-
emotion category classification performance in multiple brain
regions, Wegrzyn et al. (46) found that neural patterns in the
right FG (rFG) were best able to discriminate between emotion
categories, emphasizing the important role of this region in facial-
emotion perception.
While these studies show that brain regions involved in visual

processing contain information about facial-emotion categories,
it is unclear to what extent such representations may reflect the
influence of conceptual knowledge. For example, a plausible al-
ternative explanation of existing behavioral findings is that con-
ceptual structure affects perceptual judgments of facial emotion
due to response biases or other postperceptual processes, rather
than affecting perception itself. Existing neuroimaging findings
have been unable to directly address this concern, but recent uses
of representational similarity analysis (RSA; ref. 47) have proven
useful in disentangling various influences (e.g., visual vs. concep-
tual) on multivoxel representations in other domains (e.g., refs. 47–
54). In a recent set of behavioral studies, we used the RSA tech-
nique to show that individual differences in the conceptual struc-
ture of emotion categories are related to the structure of how those
categories are perceived using perceptual judgment data (55). How-
ever, these results cannot necessarily inform at what level of
representation such conceptual impacts may manifest. Deter-
mining whether conceptual knowledge shows an influence on
perceptual brain regions (rather than regions that would indicate
primarily postperceptual processing) is a critical step in under-
standing the manner in which conceptual knowledge is involved
in emotion perception.
The present study (n = 40) used functional neuroimaging to

test whether the conceptual structure of emotion categories may
shape the structure of those categories’ multivoxel representa-
tions in regions involved in facial-emotion perception. We hy-
pothesized that differences in the extent to which any given pair

of emotions (e.g., Anger and Disgust) are deemed conceptually
more similar would predict a corresponding similarity in multi-
voxel response patterns to faces displaying those emotions. Thus,
for all pairwise combinations of the six emotion categories Anger,
Disgust, Fear, Happiness, Sadness, and Surprise, we measured
perceptual similarity, conceptual similarity, and neural-pattern
similarity using independent tasks in an RSA approach. To dem-
onstrate an effect of conceptual similarity above and beyond any
potential physical resemblances in the emotion expressions them-
selves, we additionally derived measures of visual similarity be-
tween categories based on stimuli’s low-level image properties as
well as internal representations from a biologically based compu-
tational model of object recognition (Materials and Methods).
We were additionally interested in the role of culture, given

previous research findings that East Asian perceivers showed
differential perception of high-arousal negative facial expres-
sions compared with Western perceivers (42, 56–60). Indeed,
research has shown that these patterns of categorizations yield
perceptual representations of emotion expressions that are less
discrete (i.e., not clustered as neatly into specific categories, both
within and between individuals) in East Asian relative to West-
ern perceivers (59, 61, 62). Here, we hypothesized that Japanese
subjects (n = 20) would also show less discrete perceptual
structure of emotions than American subjects (n = 20), but that
this difference could be explained by differences in conceptual
structure. More generally, investigating culture within the RSA
framework allowed us to disentangle multiple influences on
cultural differences in perceptual judgments. Most importantly,
regardless of any such cultural differences, we hypothesized that
whatever unique conceptual structure of emotion a given subject
has will predict their unique perceptual structure and neural
pattern structure involved in representing emotion categories.

Results
We took an RSA approach, measuring conceptual similarity,
perceptual similarity, and neural-pattern similarity between each
pairwise combination of the emotion categories Anger, Disgust,
Fear, Happiness, Sadness, and Surprise (n = 40). RSA allows
direct comparison of representational spaces from different
modalities [e.g., behavioral measures, functional MRI (fMRI)
activation patterns, and computational models] by mapping the
correspondence between their similarity structures. Dissimilarity
matrices (DMs) were used to model the similarity structure
within each modality, and these DMs can be directly compared
by using standard statistical techniques that measure the variance
explained in one variable from another (e.g., correlation and
regression). Given a DM derived from patterns of neural data,
one can predict this neural DM from different candidate models,
determining which model explains most of the variance in the
neural DM. Thus, this approach allows researchers to adjudicate
between competing explanations of the brain’s representational
structure. This technique has already proven informative in a
variety of domains, including object recognition (51), social
cognition (54), social categorization (53), affect (48), and emo-
tional inference (52).
We measured neural pattern similarity through an fMRI task

in which subjects passively viewed faces displaying expressions
commonly associated with the six emotion categories Anger,
Disgust, Fear, Happiness, Sadness, and Surprise—specifically,
posed emotional expressions from the Japanese and Caucasian
Facial Expressions of Emotion (JACFEE) database (63, 64).
Japanese and American subjects were scanned in their respective
countries, but with identical scanner protocols. Comparison of
image-quality metrics derived from MRIQC (version 0.10.1) (65)
revealed comparable signal and data quality between sites (SI
Appendix, Table S1).
Following the scan, we conducted two emotion-categorization

tasks that provided complementary measures of perceptual
similarity. The first was an explicit ratings task that assessed any
systematic “confusions” or discordance in the ways that facial
expressions are categorized between individuals and cultures; in
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the task, subjects made explicit categorizations of each face they
previously saw in the scanner, with six choices corresponding to
each emotion category. The second task was a mouse-tracking
categorization task in which they made forced-choice speeded
categorizations of each face, with two emotion categories as re-
sponse options. In this task, subjects categorized using a computer-
mouse click, and the trajectories of their response-directed hand
movements were recorded on each trial. This permitted an as-
sessment of the temporal dynamics leading up to explicit catego-
rizations, which previous research has shown indexes multiple
category coactivations during perception (66–68). (Throughout the
paper, we refer to the measures derived from these tasks as
reflecting “perceptual similarity,” but, of course, the behavioral
tasks cannot be construed as “purely” perceptual, in that they still
inevitably rely on a perceptual judgment. The mouse-tracking
measures how the perceptual process evolves over time before
an explicit perceptual judgment, but, nevertheless, a judgment is
still required. However, the fMRI task consisted of passive and
unconstrained viewing of facial expressions, without any per-
ceptual judgment or task demand.) Finally, subjects also com-
pleted a conceptual ratings task for each emotion category, used
to measure conceptual similarity. Overall, we hypothesized that,
for any given pair of emotion categories, conceptual similarity
would predict perceptual similarity as well as neural-pattern
similarity in regions involved in facial-emotion perception. To
control for potential confounding influences from the visual
stimuli themselves, we also computed measures of the inherent
visual similarity of the face stimuli belonging to each category.

Behavioral Results.
Cultural differences in emotion perception. Our one cross-cultural
hypothesis was to replicate in our paradigm previous studies
finding differential perception of high-arousal negative facial
expressions in Eastern vs. Western cultures (42, 56–60), which
yields a less discrete perceptual structure in Japanese vs. American
subjects (59, 61, 62). In the present work, when referring to cate-
gorization responses, we use the term “discordance” to refer to

responses inconsistent with the intended emotion display, per the
JACFEE stimulus database, so as not to imply that they are erro-
neous. We found significantly different rates of discordance in
categorizations between cultures, with Japanese (n = 20) showing
higher discordance (M = 18.125%, SD = 7.86) than Americans [n =
20;M = 6.875%, SD = 7.56), t(38) = 4.614, P = 0.0000439] (Fig. 1).
In particular, Japanese subjects frequently categorized posed Angry
facial expressions as Disgusted (and vice versa) and posed Fearful
facial expressions as Surprised (and vice versa), relative to American
subjects.
Although not of primary interest, since the stimulus set in-

cluded both Caucasian and Japanese target faces, we also tested
a possible interaction between subjects’ culture and the culture
of the target faces impacting rates of discordance. A 2 × 2
repeated-measures ANOVA on accuracy rates showed a signif-
icant interaction between a subject’s culture and the target face’s
culture, F(1,38) = 4.265, P = 0.046. Follow-up paired-samples
t tests demonstrated that Japanese subjects had higher accuracy
for Caucasian faces (M = 0.84) compared with Japanese faces
(M = 0.79), t(19) = 2.6, P = 0.017. American subjects’ accuracy,
however, did not differ between Japanese (M = 0.93) and Cau-
casian faces (M = 0.93), t(19) = 0.27, P = 0.79. It is worth noting
that the outgroup advantage observed for Japanese perceivers in
this analysis was consistent with recent metaanalytic work showing
that emotion displays are more often recognized in targets from
historically heterogeneous (vs. homogeneous) societies (69).
Consistent with previous work (59, 61, 62), these results sug-

gest that Japanese subjects have a less discrete perceptual structure
(as measured by patterns of discordant responses) of emotion
categories. Our primary analyses focused on whether such differ-
ences in perceptual structure could be explained by individual
variability in conceptual structure.
Behavioral RSA. Our primary behavioral analyses focused on
assessing the relationship between conceptual and perceptual
similarity for each individual subject and for each pairwise
combination of the emotion categories Anger, Disgust, Fear,

Angry

Disgusted

Fearful

Happy

Sad

Surprised

Angry Disgusted Fearful Happy Sad Surprised Angry Disgusted Fearful Happy Sad Surprised

U.S. % ratings

Perceived emotion Perceived emotion

noito
me

deyalpsi
D

100%

80%

60%

40%
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Fig. 1. Discordance between cultures in explicit categorizations of facial-emotion expressions. In an explicit categorization task, subjects categorized each
face as one of the six emotion categories: Anger, Disgust, Fear, Happiness, Sadness, or Surprise. We found that the resulting perceptual structures showed
systematically more “discordance,” or categorizations not in accordance with the intended facial expression, in Japanese vs. American subjects. Rates of
categorizations for each culture are shown for each image.
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Happiness, Sadness, and Surprise (yielding 15 unique pairs of
emotion categories under the diagonal of the 6 × 6 DMs; Fig. 2).
We hypothesized that each individual’s model of conceptual

similarity would significantly predict their model of perceptual
similarity, controlling for models of the visual similarity of the
face stimuli used in each category. Conceptual DMs were created
for each subject based on their data from a conceptual rating task
in which they rated each emotion category on its conceptual re-
lationship with a 40-item battery of emotion features used in pre-
vious research (55), including thoughts, bodily feelings, and action
tendencies (items such as “crying,” “heart racing,” “clenching fists,”
etc.; Materials and Methods and SI Appendix, Table S2). We mea-
sured the overlap in patterns of responses for each pair of emotion
categories, yielding a unique conceptual DM for each subject (Fig. 2
and SI Appendix, Figs. S1 and S4).
Separate perceptual DMs were created for each subject based

on responses in the two perceptual tasks: the six-choice emotion
categorization task (perceptual outcomes; Fig. 1) and the two-choice
mouse-tracking task (perceptual process; Fig. 2 and SI Appendix,
Figs. S2 and S5). Computer-mouse tracking is a well-validated
measure of the temporal dynamics of perceptual categorization,
providing an index of how multiple categories simultaneously
coactivate and resolve during real-time perception (66–68). On
each trial, subjects were presented with a face stimulus displaying
an emotional facial expression and categorized it as one of two
emotion categories (e.g., “Angry” vs. “Disgusted”) by clicking on
a response in either top corner of the screen. On every trial, one
of the response options corresponded to the intended emotion
display of the face stimulus. Maximum deviation (MD) of sub-
jects’ response trajectories toward the unselected category re-

sponse provided an indirect measure of the degree to which the
unselected category was simultaneously coactivated with the ul-
timately selected category during perception, despite only one
facial emotion being depicted (Materials and Methods). Thus, each
subject’s average MD within each category pair (e.g., Anger–Disgust
or Fear–Sadness) served as our measure of the perceptual similarity
between those emotion categories (their degree of coactivation from
the same facial stimuli; SI Appendix, Figs. S2 and S5).
As with the explicit categorization data, although not of primary

interest, we submitted rates of accuracy as well as MD to a 2 × 2
repeated-measures ANOVA to assess a potential interaction be-
tween the subjects’ culture and the culture of the face stimulus
impacting these measures. No interaction was observed for either
accuracy [F(1,38) = 1.661, P = 0.205] or MD [F(1,38) = 0.006,
P = 0.941].
To control for the potential contribution of visual similarity

between the stimuli in each pair of emotion categories, we
computed two visual models of similarity in the low-level image
properties of the stimuli in each category, as well as a third
model derived from the similarity structure of the stimuli’s in-
ternal representations from the HMAX computational model of
visual object recognition (ref. 70; Materials and Methods). The
resulting visual DMs comprehensively mapped the pairwise
similarities between emotion categories in the visual features of
their associated stimuli (SI Appendix, Fig. S3).
Conceptual, perceptual, and visual DMs were all recoded into

comparable distance metrics, so that higher values in each model
indicated greater dissimilarity and lower values indicated greater
similarity between each emotion category pair (for ease of
communication, we continue to use the term “similarity,” but all

conceptual similarity perceptual similarity
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Fig. 2. Behavioral RSA results. We measured each subjects’ conceptual similarity between each pairwise combination of the emotions Anger, Disgust, Fear,
Happiness, Sadness, and Surprise through a conceptual ratings task. Perceptual similarity was measured two ways. One measure of perceptual similarity used
computer mouse-tracking, which indexed participants’ response-directed hand movements en route to an eventual category response in a facial-emotion
perception task. Perceptual similarity was also assessed as participants’ tendency to explicitly categorize faces in a “discordant” manner—that is, to select a
certain category response (e.g., Disgust) instead of the intended category displayed by the image (e.g., Anger). Using each measure of perceptual similarity,
we found that emotion categories that were conceptually more similar in the mind of a given subject were perceived with a corresponding similarity,
controlling for the visual similarity of the stimuli in each category. For illustrative purposes, the whole-sample average conceptual DM, mouse-tracking
perceptual DM, and explicit perceptual DMs are depicted.
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values analyzed in our models were in units of dissimilarity). To
account for repeated measurements within subjects, we used a
multilevel regression approach with generalized estimating equa-
tions (GEEs; ref. 71) to predict perceptual similarity (MD) from
conceptual similarity, adjusting for the contribution of the three
visual models. Unstandardized regression coefficients are reported.
From the explicit six-choice categorization task, rates of dis-

cordant categorizations were calculated for each subject and
each emotion-category pair (e.g., for Anger–Disgust, how often a
subject categorized a posed Angry facial expression as Disgusted
or vice versa) and recoded into a distance metric to be used as a
measure of perceptual similarity (Materials and Methods). Con-
sistent with our predictions, we found that conceptual similarity
significantly predicted perceptual similarity, controlling for the
three different measures of visual similarity: B = 0.1105, SE =
0.0235, 95% CI [0.0644, 0.1567], Z = 4.70, P < 0.0001 (Fig. 2).
From the two-choice mouse-tracking task, MD (i.e., the degree
of category coactivation) for each subject and each category pair
served as another measure of perceptual similarity. Again, concep-
tual similarity significantly predicted perceptual similarity, con-
trolling for the three measures of visual similarity, B = 0.0714,
SE = 0.0096, 95% CI [0.0525, 0.0903], Z = 7.41, P < 0.0001.
Conceptual DMs were constructed from subjects’ ratings on a

set of 40 features that included thoughts and bodily feelings (e.g.,
“nausea” or “heart racing”) but also physical attributes of faces
(e.g., “laughing” or “wide eyes”). To ensure that the association
between conceptual and perceptual DMs was not spuriously
produced by mere similarity in physical attributes of faces, we
partitioned the 40 features into those which were face-related
(12 features) and non-face-related (28 features; SI Appendix,
Table S2) and computed two additional conceptual DMs from
ratings on only face-related and non-face-related features. Sep-
arate models using each conceptual DM revealed that, expect-
edly, the face-related conceptual DM significantly predicted
perceptual similarity (mouse tracking), controlling for the three
different measures of visual similarity (B = 0.0477, SE = 0.0068,
95% CI [0.0344, 0.0610], Z = 7.03, P < 0.0001), as did the non-
face-related conceptual DM (B = 0.0669, SE = 0.0096, 95% CI
[0.0481, 0.0857], Z = 6.98, P < 0.0001). Critically, when including
both DMs as predictors in the same model, the non-face-related
conceptual DM remained a significant predictor (B = 0.0401,
SE = 0.0129, 95% CI [0.0148, 0.0654], Z = 3.11, P = 0.0019), as
well as the face-related conceptual DM (B = 0.0276, SE =
0.0086, 95% CI [0.0107, 0.0446], Z = 3.19, P = 0.0014). Separate
models using each conceptual DM revealed a similar pattern of
results for the perceptual DM derived from explicit categoriza-
tion data. The face-related conceptual DM significantly pre-
dicted perceptual similarity (discordant responses), controlling
for the three different measures of visual similarity (B = 0.0379,
SE = 0.0083, 95% CI [0.0217, 0.0541], Z = 4.58, P < 0.0001), as
did the non-face-related conceptual DM (B = 0.0508, SE =
0.0113, 95% CI [0.0286, 0.0729], Z = 4.50, P < 0.0001). As with
the mouse-tracking perceptual DM, when including both DMs as
predictors in the same model, the non-face-related conceptual
DM remained a significant predictor (B = 0.0274, SE = 0.0136,
95% CI [0.0007, 0.0540], Z = 2.01, P = 0.0440), as well as the
face-related conceptual DM (B = 0.0245, SE = 0.0102, 95% CI
[0.0045, 0.0445], Z = 2.40, P = 0.0162). These analyses show that
conceptual similarity unrelated to physical attributes of faces
predicts perceptual similarity, above and beyond any effect of
that related to physical attributes.
Thus, the behavioral results show that the more a subject be-

lieved two emotion categories to be conceptually similar predicted
a greater number of categorization discordances and greater
coactivation of the two categories (simultaneous attraction in
hand movement to both responses). These results replicate and
extend prior work (55), demonstrating that when emotion cate-
gories are more conceptually similar in the mind of a perceiver,
their facial expressions are perceived with a corresponding sim-
ilarity, as reflected in both an explicit and more indirect measure
of emotion categories’ perceptual similarity. In both cases, con-

ceptual similarity predicted perceptual similarity over and above
the physical similarity in the facial expressions themselves, and
these results could not be explained by conceptual associations
about faces’ physical attributes alone. Moreover, with respect to
the cultural differences reported earlier, these results suggest
that, while there are differences in explicit categorizations of
facial-emotion categories between cultures overall, whatever
unique conceptual structure a given subject has is reflected in their
perceptual structure, regardless of what culture they are from.

fMRI Results.
Searchlight RSA. We computed whole-brain activation maps for
each subject, comprising their average neural response patterns
to Angry, Disgusted, Fearful, Happy, Sad, and Surprised facial
expressions (Materials and Methods). First, we aimed to identify
any regions in which multivoxel response patterns to faces showed
a similarity structure corresponding to the conceptual similarity
structure of the subject’s culture. We conducted a whole-brain
searchlight analysis with multiple-regression RSA, testing whether
neural-pattern similarity of local response patterns was significantly
predicted by conceptual similarity, controlling for the three models
of visual similarity (P < 0.05, corrected;Materials and Methods). This
analysis revealed a region of the rFG (x = 38, y = −43.6, z = −25;
mean t = 4.54; 146 voxels) (Fig. 3). No other regions survived
correction.
To determine whether this rFG region reflected individual

variability in emotion-concept knowledge, a region of interest
(ROI) analysis was used to test whether rFG neural-pattern
similarity was significantly related to each subject’s own idio-
syncratic conceptual DM. To ensure independence between
the data used to generate the ROI and the data tested within the
ROI (72), we employed a leave-one-out procedure in which the
corrected-group statistical map was recomputed n = 40 times,
with one subject left out of the analysis on each iteration. Each
analysis yielded a similar cluster in the rFG to the one revealed
by the analysis on the full sample. For each subject-specific rFG
ROI, we tested whether the left-out subject’s neural DM within
this ROI was predicted by their idiosyncratic conceptual DM,
once again controlling for the three models of visual similarity.
The beta values from these analyses were submitted to a one-sample
t test. Indeed, neural-pattern structure in the independent rFG ROI
was significantly related to each subject’s idiosyncratic conceptual
structure, one-sample t(39) = 2.867, P = 0.007, and this could not be
explained by inherent visual structure as described by three visual
models. These results suggest that a subject’s unique conceptual
knowledge about emotion is reflected in rFG representational
structure when viewing faces displaying emotional facial expressions.

Discussion
We found that neural patterns in the rFG exhibit a similarity
structure of emotion categories that conforms to culturally and
individually held conceptual knowledge about emotion, even
when controlling for the potential contribution of visual cues.
Moreover, conceptual similarity predicted multiple behaviorally
derived estimates of the representational structure of emotion
perception. These findings support recent theoretical and com-
putational models of emotion and social perception which posit a
fundamental relationship between conceptual knowledge and
emotion perception (23–26). The results also dovetail with the
literature on object recognition and visual cognition more gen-
erally, which suggest that perceptual category representations in
the ventral temporal cortex may be subject to the influence of
predictions derived from prior knowledge, memory, and con-
textual associations (32, 73–79).
Recent behavioral evidence has begun to support the idea that

conceptual knowledge about emotion scaffolds facial-emotion
perception, in contrast to classic approaches which assume that
conceptual knowledge is more or less separable from emotion-
related events. However, behavioral studies alone have been
unable to identify which levels of perceptual processing are im-
pacted by conceptual knowledge, in theory running the risk of
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capturing postperceptual outcomes. By integrating behavioral
measures with multivariate fMRI, here we provided evidence
suggesting that conceptual knowledge shapes representations of
emotion categories in the rFG, a region critically involved in the
perceptual processing of faces. These findings were afforded by
an RSA approach that permitted a broad and comprehensive
test of the correspondence between conceptual structure with
perceptual and neural-pattern structure, but it was necessarily
correlational. Thus, strong inferences about any causal relationship
between conceptual knowledge and emotion perception would be
unwarranted. Still, the possibility of top-down conceptual impact
on perception via rFG representations is consistent with recent
theory and evidence suggesting that low-level processing of visual
input associated with a particular category may trigger relevant
cognitive resources (i.e., conceptual knowledge shaped by past
experience) that guide higher-level visual perception via regions,
including the rFG (24, 25, 32, 73–79).
Indeed, recent work utilizing RSA finds that exclusively

bottom-up, feature-based models of visual percepts cannot fully
account for their representations in ventral temporal cortex (50,
80, 81) and that social expectations about face stimuli partly
predict their representational structure in the rFG (53). More-
over, univariate responses in regions such as the rFG are sensi-
tive to expectations about visual stimuli (32), including face
stimuli in particular (82). Neural representations in this region
can also be shaped by subjective categorizations made about face
stimuli (83, 84). Such results suggest that ventral–temporal cor-
tical representations do not purely reflect visual encoding of
stimulus features, but comprise conceptually shaped or “visuo-
semantic” representations (50). Taken together with this pre-
vious work, the present findings suggest that, like other kinds of
visual information, rFG representations of a given facial-emotion
display may be tuned in part by conceptual understanding of
that emotion.
While our results are consistent with recent developments in

understanding the flexible nature of rFG representations, the
stringency of our whole-brain searchlight analysis may have
precluded an investigation into other stages of visual processing
that could be more subtly influenced by conceptual knowledge.
For example, research using eye-tracking shows that cultural
differences in early visual processing of faces arise from spon-
taneous differences in the way that visual attention is deployed to
extract information from faces (85). Moreover, while the passive
viewing paradigm used in the fMRI task allowed for a more
unconstrained perceptual task, this approach limits any infer-
ences about whether different individuals were processing the
images differently in real time. An important task for future work
will be to determine whether conceptual knowledge has a broader

impact on visual-processing regions, including earlier regions that
feed output to the rFG. However, previous studies have found the
rFG to be a primary site of top-down effects on various kinds of
face processing without any broader cortical participation, and
effective connectivity analyses suggest that the rFG may readily be
modulated by higher-order regions with conceptual access during
face processing (32, 82). [It is additionally possible that low sta-
tistical power or low signal-to-noise ratio may have resulted in only
a single localized region of the rFG, such that improving power
may have yielded additional regions. While we cannot exclude this
possibility, quantified estimates of data quality revealed no issues
at either scanning site (SI Appendix, Table S1).]
Cultural differences in emotion perception between Eastern

and Western countries (and Japan vs. the United States in par-
ticular) have been widely studied, as they can often speak to
fundamental debates regarding the universality of emotion. Our
behavioral results replicate a well-established finding in this
domain—differential perception of high-arousal negative facial
expressions. Due to the widely held assumption that emotions
are universally recognized from facial features alone, these
findings are often taken to simply reflect different cultural norms.
In particular, a prominent idea is that Japanese individuals have
different “rules” for displaying and interpreting emotion, such that
they regulate their level of expressiveness and their willingness to
explicitly label others with certain emotion categories (37, 40, 41,
86). However, in the present study, an additional predictor of an
individual’s rate of discordance in categorization was not only their
culture, but their internal conceptual model of emotions. While we
expect that cultural norms still play a role, our findings suggest that
“incorrect” responses in emotion-perception tasks may reflect
genuine discordance in perception rather than the outcome of
a regulatory strategy.
Indeed, rather than relying on broad distinctions between

cultures, our analyses make use of individual subjects’ conceptual
structure, demonstrating substantial within-cultural variability
between individuals that is reflected in emotion perception. We
hope that our approach may inspire future research to explore
variability within cultures, as well as between them, to under-
stand variation and flexibility in a variety of psychological domains.
One task for future research is to further understand the nature
and origins of subtle interindividual variability in emotion-concept
knowledge. Recent developmental work has focused on under-
standing how children acquire and differentiate emotion concepts
(e.g., ref. 87). To determine how conceptual structure can differ
subtly between individuals, continued efforts in this domain may
benefit from more attention to the differences in verbal and
nonverbal displays of emotion that occur during sensitive periods
of development. More generally, interindividual variability in
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emotion has previously been studied with constructs such as
emotion “differentiation,” “granularity,” and “complexity,” which
capture different aspects of variability in individuals’ use of emo-
tion categories to describe their affective experiences (88–90). An
important task for future research will be to determine whether
similar latent constructs underlie variability in emotion perception,
or if differences in conceptual structure may globally shape an
individual’s relationship to emotion experience and perception. To
detect these differences (which may manifest in instability of the
underlying dimensions of conceptual structure), future studies
could also benefit from studying more emotion categories beyond
the six emotion categories tested in the present study. Indeed,
while the fMRI task did not impose any constraints on subjects
while they viewed faces, both behavioral tasks had a fixed set of
category response options on each trial. It is possible that different
patterns of cultural and individual differences may emerge when
subjects are given a wider variety of emotion category labels to
choose from, or when experimenter constraints on category op-
tions are removed entirely.
A related limitation of this research concerns our materials,

some of which were produced in a Western context. For exam-
ple, the emotion features used to calculate conceptual similarity
came from American participants in an earlier study (55). To
match the demographic composition of our sample, we used
images from the only facial-expression database to our knowl-
edge including validated and controlled emotion displays from
both Japanese and Caucasian individuals. As in other databases
of emotional facial expressions, the facial displays in these im-
ages are posed to minimize ambiguity and maximize categori-
zation performance in human subjects. However, the validity of
the assumption that these facial expressions are “recognized”
universally has been weakened by work showing that facial ex-
pressions themselves—the configurations of facial actions asso-
ciated with each specific category—may differ substantially
between Eastern and Western cultures (59, 61, 62). Therefore,
the images may primarily conform to Western norms and ex-
pectations about facial expressions. Indeed, some recent work
shows that, when asked to pose emotion expressions, Japanese
perceivers do not typically generate the stereotypical expressions
associated with Western norms (91). Cross-cultural studies on
emotion perception using more data-driven techniques to pro-
duce face stimuli have been able to estimate more nuanced
patterns of consistency and discordance in facial-emotion dis-
plays between cultures (e.g., ref. 92). However, this limitation
does not only impact cross-cultural investigations. Even within
the same culture, few studies find that individuals spontaneously
produce these stereotyped facial poses during real-world instances
of emotion (93). Future work should take care to introduce vari-
ability into the facial actions displayed in the stimulus set to in-
crease ecological validity when measuring variability in emotion
perception between individuals, cultures, and contexts.
Finally, our findings have relevance for artificial intelligence

and computer vision—fields that are rapidly converging with
psychology and neuroscience. Enormous effort has focused on
developing computational models that perform as well as hu-
mans in classifying the emotions of others (94, 95). However, these
approaches have largely been inspired by classic theories of emo-
tion perception that emphasize the role of sensitivity to particular
combinations of facial cues. As a result, existing computational
models primarily focus on extraction of facial features (95–98).
Our findings suggest that, if computational models wish to capture
the full range of human performance in emotion-perception tasks,
they may need to incorporate computational implementations of
emotion-concept knowledge, including contextual situational as-
sociations and related appraisals. Developing such computational
accounts of emotion concepts promises to benefit multiple fields
(see refs. 52, 99, and 100 for early efforts in this area), but finding
the exact specifications of these models will be a demanding task
for future research.

Materials and Methods
Subjects. A total of 40 subjects participated in the study, all of whom were
right-handed, with normal or corrected-to-normal vision and no history of
neurological or psychiatric disease. All subjects were financially compensated
and provided informed consent in a manner approved by the New York
University Institutional Review Board and/or the Ethics Committee at the
National Institute for Physiological Sciences, both of which approved the
experimental procedures described here. Japanese subjects (n = 20) were
recruited from the surrounding community of the National Institute for
Physiological Sciences in Okazaki, Japan (10 female, Mage = 21.75, SDage =
1.65). To minimize any potential influence of cultural and linguistic experi-
ences on task performance, Japanese subjects were only recruited if they
reported little to no English language ability and no time spent abroad
where they would have had firsthand experience of the English language or
Western culture. American subjects (n = 20) were recruited from the sur-
rounding community of New York University (12 female, Mage = 24.5,
SDage = 6.16). American subjects had no Japanese language ability and no
time spent abroad where they would have had firsthand experience of
Japanese culture.

Stimuli. Face stimuli were 48 photographs from the JACFEE (64) stimulus set.
For each of the six facial-emotion categories Anger, Disgust, Fear, Happiness,
Sadness, and Surprise, the stimuli comprised eight images, including four
Caucasian (two female) and four Japanese individuals (two female) por-
traying stereotyped emotional facial expressions (e.g., scowls for Anger and
smiles for Happiness). This particular stimulus set was chosen to match the
demographic composition of the sample (half Caucasian and half Japanese).
No single identity was depicted in more than one image. Stimuli were
converted to grayscale and matched on luminance and contrast by using the
SHINE toolbox to control for low-level image properties (101).

Word and phrase stimuli used tomeasure conceptual similarity were taken
from a previous study (55). Subjects in this study were instructed to “list the
top 5 bodily feelings, thoughts, or actions” they personally associated with
the six emotion categories under study. We took the 40 words and phrases
that were reported most frequently across all emotions and subjects and
used those as stimuli in the conceptual rating task. For the Japanese sample,
all text-based materials were translated into Japanese by J.C., who speaks
both Japanese and English and has spent substantial time living in both
Japan and the United States. The translated tasks were pretested on several
bilingual (Japanese/English) researchers to ensure translational equivalence.

MRI Acquisition. Japanese and American subjects were scanned by using
identical acquisition protocols. Japanese subjects were scanned by using a
Siemens 3T Magnetom Verio with a 32-channel head coil at the National
Institute for Physiological Sciences. American subjects were scanned on a
Siemens 3T Magnetom Prisma with a 32-channel head coil at the New York
University Center for Brain Imaging. Structural images were acquired by using
a 3D MPRAGE T1-weighted sequence with the following parameters: 1,800-ms
repetition time (TR); 1.97-ms echo time (TE); 1.0-mm3 voxel size; 256-mm
field of view (FOV); 176 slices with no gap; anterior–posterior phase
encoding direction. Functional images were acquired by using a multiband
echo-planar imaging sequence with the following parameters: 1,000 ms TR,
35 ms TE, 2.0 mm3 voxel size; 192 mm FOV; 60 slices with no gap; anterior–
posterior phase encoding direction; multiband acceleration factor of 6.
Gradient spin-echo field maps were also acquired in both the anterior–posterior
and posterior–anterior phase encoding directions for use in correcting for
potential susceptibility artifacts. Diffusion-weighted images were also col-
lected, but those data are not presently reported.

fMRI Task. The fMRI task used an event-related design that largely followed
the procedures used in refs. 49 and 53. Across 10 functional runs lasting 5 min
and 24 s each (thus totaling 54 min of scanning time), subjects passively
viewed faces displaying posed facial expressions commonly associated with
the six emotion categories under study. Each functional run included six
trials, each of which consisted of six encoding events, one null event (fixation),
and one probe event, in which subjects were instructed to make a “yes” or
“no” recognition judgment about whether the probe face appeared in the
same trial. Probe events were included to ensure subjects’ attention to the face
stimuli. Encoding events were presented in a pseudorandomized order to
ensure a similar stimulus order and distribution of probe and intertrial in-
tervals (ITIs) between subjects. Trials were separated by ITIs ranging from
2,000 to 6,000 ms. Each encoding event presented one face stimulus for
1,500 ms, followed by a 4,500-ms fixation cross. Probe events also followed
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the same structure, presenting the face probe for 1,500 ms followed by a
4,500-ms fixation cross.

Behavioral Tasks.
Explicit categorization task. Subjects completed a task in which they provided
explicit emotion categorizations for each of the 48 stimuli from the fMRI task.
Subjects were instructed to choose which specific emotion they thought the
person in each photograph was experiencing, given the choice of all six
emotion categories (Anger, Disgust, Fear, Happiness, Sadness, and Surprise).
Mouse-tracking categorization task. Mouse-tracking data were collected with a
standard two-choice categorization paradigm implemented inMouseTracker
software (102). Stimuli in the mouse-tracking task were the same faces from
the fMRI and explicit categorization tasks. On each of 240 trials, subjects
clicked a start button at the bottom center of the screen, which revealed a
face stimulus. Each stimulus stayed on the screen until subjects chose one of
two response options located in either top corner of the screen. On each
trial, the response options were two emotion categories (e.g., “Angry” or
“Disgusted”), one of which always corresponded to the posed expression
displayed in the face stimulus. Response options changed on every trial and
always included the ostensibly correct response. Trials were randomized, and
the position of response options (left/right) was counterbalanced across
trials. The specific number of trials was chosen to ensure an equal number of
stimulus repetitions and trials per category pair, resulting in each stimulus
being presented five times throughout the task and 16 trials per emotion
category pair condition (e.g., Anger–Disgust).
Conceptual ratings task. Subjects completed a task in which they rated each
emotion category (Anger, Disgust, Fear, Happiness, Sadness, and Surprise) on
its conceptual relationship with a set of 40 traits including thoughts, bodily
feelings, and associated actions, as used in prior work (ref. 55; SI Appendix,
Table S2). Subjects attended to one emotion category at a time, for a total of
six blocks presented in a randomized order. In each block, subjects rated
each of the 40 word/phrase stimuli for how related it was to the emotion
category in question (e.g., “On a scale from 1 = not at all to 7 = extremely,
how related is ‘tension’ to the emotion Sadness?”), for a total of 240 trials.
No faces were involved in this task.

Perceptual DMs. We used data from the explicit categorization task to pro-
duce a perceptual DM for each subject. In particular, for each subject, we
measured pairwise discordance between emotion categories—the tendency
to categorize a face as a different emotion category than the one it is posed
to display. For example, the Anger–Disgust cell in this perceptual DM would
capture the percentage of times that a subject categorized an Angry face as
Disgusted or a Disgusted face as Angry. To use these values as a dissimilarity
metric, we subtracted them from 1, such that a value of 0 would mean that
all Angry faces were rated as Disgusted and all Disgusted faces were rated as
Angry (high perceptual similarity), and a value of 1 would mean that all
categorizations were in accordance with the posed facial expression (high
perceptual dissimilarity).

Data from the mouse-tracking task were also used to estimate the simi-
larity between emotion categories in how they are perceived. Any mouse
trajectories with response times >3 SDs above the mean for a given subject
were excluded. This procedure resulted in at most 3.33% of trials being ex-
cluded for a given subject. Since we were interested in mouse-trajectory de-
viation toward unselected responses regardless of the eventual response
(which reflects greater similarity in how a face was perceived between the two
emotion-category options), “incorrect” responses (i.e., final responses not in
concordance with the posed facial expression) were included in the dataset.

Per standard preprocessing procedures for mouse-tracking data (102),
trajectories were normalized into 100 time bins by using linear interpolation
and rescaled into an x,y coordinate space with [0,0] as the start location. MD
was calculated for each mouse trajectory as the trajectory’s maximum per-
pendicular deviation toward the unselected response option on the opposite
side of the screen from the ultimately chosen response. To construct percep-
tual DMs from the mouse-tracking data, MD was rescaled for each subject
within a range of [0,1] such that 0 corresponded to a subject’s largest MD
(reflecting high category coactivation and thus perceptual similarity) and
1 corresponded to their smallest (reflecting perceptual dissimilarity). MD was
then averaged within category pair (e.g., for the Anger–Disgust cell, average
rescaled MD on all trials with “Angry” and “Disgusted” as response options).

Conceptual DM. To obtain a conceptual DM for each subject and for each of
the six emotion categories Anger, Disgust, Fear, Happiness, Sadness, and
Surprise, we calculated the Pearson correlation distance between vectors of
responses to the word and phrase stimuli for each emotion category in the
conceptual ratings task. For example, to measure each subject’s conceptual

similarity between Anger and Disgust, we calculated the Pearson correlation
distance between their Anger vector of 40 ratings and Fear vector of 40 ratings.

Visual DMs. To adjust for the possible contribution of bottom-up overlap in
the physical features between images in two categories (e.g., physical re-
semblance between face stimuli in the Anger and Disgust categories), we
included three visual controls in our model: silhouette, pixel-intensity map,
and HMAX. Tomodel low-level visual features in each image, we used custom
MATLAB scripts to compute a silhouette model and pixel-intensity map for
each image. For each stimulus, the silhouette model transformed the image
into a silhouette (i.e., a matrix of 0 and 1 s with 0 corresponding to back-
ground pixels and 1 corresponding to face pixels) and then produced a
flattened pixel-intensity map for the silhouette image (i.e., single vector of
1 and 0 s per image). Silhouette models typically perform well in modeling
representations in the early visual cortex (47) and also capture retinotopic
outlining of visual stimuli, accounting for any difference in facial shapes that
may contribute to categorization responses (103). The additional pixel-
intensity map was a model of general low-level image similarities com-
puted on a pixel-by-pixel basis on the original (nonbinarized) stimuli.

To model higher-level visual features in each image, we submitted each
image as input to the HMAX feed-forward computational model of object
recognition (70) and extracted high-dimensional internal representations for
each image from the C2 layer. We used a publicly available instantiation of
the 2007 version of the model (104) implemented in MATLAB (https://
maxlab.neuro.georgetown.edu/hmax.html). The HMAX model was designed
to model the first 150 ms of visual processing in primate cortex, with the
C2 layer accounting for position- and orientation-invariant visual object
representations in posterior inferotemporal regions (70, 104). While newer
convolutional neural networks can achieve higher-classification performance
(105, 106), HMAX has the benefit of interpretability since it is designed with
maximum fidelity to the known anatomical and physiological properties of
neural computation. As such, HMAX representations provide a conservative
estimate of how much representational content can be attributed to hierar-
chical feed-forward processing of features alone.

These three visual models were computed for each of the 48 stimuli used in
the fMRI and mouse-tracking tasks. To compute dissimilarity values between
emotion categories, we averaged representations from the visual models
within-category (e.g., for each of the three models, the average represen-
tations for each of the images corresponding to Anger) and computed the
Pearson correlation distance between the average values for each of the
15 pairs of emotion categories, resulting in 6 × 6 visual DMs for each measure
of visual similarity.

fMRI Preprocessing. Functional data were first corrected for susceptibility
artifacts by using TOPUP in FSL (107, 108). Subsequent preprocessing steps
were performed by using FMRIPREP (Version 1.0.0) (109), a Nipype (110)-
based tool. Each T1-weighted (T1w) volume was corrected for intensity
nonuniformity by using N4BiasFieldCorrection (Version 2.1.0) (111). Skull-
stripping and nonlinear spatial normalization was performed by using the
antsBrainExtraction and antsRegistration tools in ANTs (Version 2.1.0) (112),
using brain-extracted versions of both the T1w volume and template. Brain-
tissue segmentation of cerebrospinal fluid (CSF), white matter (WM), and
gray matter was performed on the brain-extracted T1w by using fast in FSL
(Version 5.0.9) (113). By using the resulting tissue masks, physiological noise
regressors were extracted for CSF, WM, and global signal at each functional
volume by using CompCor (114).

Functional data were motion-corrected by using mcflirt in FSL (Version
5.0.9) (115). This was followed by coregistration to the corresponding T1w by
using boundary-based registration (116) with 9° of freedom, using flirt in
FSL. Motion-correcting transformations, BOLD-to-T1w transformation, and
T1w-to-template (MNI) warps were concatenated and applied in a single
step by using antsApplyTransforms in ANTs (Version 2.1.0) using Lanczos
interpolation. Functional images were, finally, smoothed by using FSLSTATS
with a 4-mm full-width at half-maximum Gaussian smoothing kernel.

RSA. In all behavioral and fMRI RSA analyses, the 15 unique dissimilarity
values under the diagonal of the 6 × 6 conceptual, perceptual, visual, and
neural DMs were vectorized and submitted to multiple regression. Behav-
ioral RSAs were conducted by using GEE multilevel regression to account for
intracorrelations due to repeated measurements (71). fMRI searchlight RSA
was conducted by using custom Python code (see below). Vectors were
z-normalized to isolate the relative pattern of each condition (removing
absolute differences in vector magnitude and scale; refs. 50 and 117). Because
multiple-regression RSA assumes a linear combination of multiple predictor
DMs, these analyses require a dissimilarity measure that sums linearly; thus,
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squared Euclidean distance is an appropriate measure (118). However, because
squared Euclidean distances of normalized pattern vectors are equivalent (i.e.,
linearly proportional) to Pearson correlation distances (119), we report results
in Pearson correlation distance for ease of understanding and for greater
intuitiveness.

fMRI Data Analysis. To generate a single whole-brain pattern of activation per
emotion category, the average hemodynamic response for each condition
was estimated for every voxel in the brain and for every run by using
3dDeconvolve in AFNI. BOLD responses were modeled by using a general
linear model with a design matrix that included a total of 15 predictors: six
predictors for each stimulus condition (Anger, Disgust, Fear, Happiness,
Sadness, and Surprise); one predictor to model probe (recognition) events;
and eight predictors to model effects of no interest (average signal at each
time point attributable to WM, global signal, linear motion in three direc-
tions, and angular motion in three directions). The seven event-related
predictors (six emotions + probe events) were modeled as boxcar func-
tions across the first 2,000 ms of each event, during which the face stimuli
were presented. These regressors were convolved with a gamma variate
function (GAM in AFNI) to model the hemodynamic response. Brain re-
sponses associated with probe events were not included in any subsequent
analyses. The voxelwise t statistics comparing each of the remaining six
stimulus conditions of interest to baseline in each run were averaged across
runs, and the resulting statistical maps comprised whole-brain patterns of
activation for each emotion category for use in searchlight RSA.

For each subject, multiple-regression searchlight RSA was performed by
using PyMVPA (120). A searchlight sphere was centered on every voxel in the
brain, and the similarity structure of the multivoxel patterns within the
sphere (neural DM) was tested against the similarity structure of predictor

models (conceptual and visual DMs). Specifically, at each 5-voxel (10-mm)
radius searchlight sphere, the multivoxel response pattern for each of the six
emotion categories was vectorized, and Pearson correlation distance was
used to compute the neural dissimilarity of each category pair, yielding a 6 × 6
neural DM. The neural, conceptual, and visual DMs were rank-ordered
(which is preferable when comparing DMs derived from different measures;
ref. 47), and ordinary least-squares regression was used to predict the neural
DM from the conceptual DM within each searchlight sphere, with the three
visual DMs included as covariates. The resulting regression coefficient for the
conceptual DM was then mapped back to the center voxel of the searchlight
sphere. The resulting subject-level maps depict the whole-brain correspondence
between the conceptual DM and neural DM, controlling for three models of
visual feature-based similarity.

These subject-level maps were then tested at the group level by using a
one-sample t test in conjunction with maximum statistic permutation testing
using Randomize in FSL (121), which tested significance of the raw t statistic
with 5,000 Monte Carlo simulations. The resulting group-level statistical
maps are significant at the P < 0.05 level, corrected for multiple comparisons
using threshold-free cluster enhancement (122), which controls the family-
wise error rate without setting arbitrary cluster-forming thresholds.

Data and Code Availability. Data and code relevant to the results in this man-
uscript are publicly available and hosted by the Open Science Framework (123).
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