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Abstract

Previous research has shown that social-conceptual associations, such as stereotypes, can influence the visual represen-
tation of faces and neural pattern responses in ventral temporal cortex (VTC) regions, such as the fusiform gyrus (FG).
Current models suggest that this social-conceptual impact requires medial orbitofrontal cortex (mOFC) feedback signals
during perception. Backward masking can disrupt such signals, as it is a technique known to reduce functional connectiv-
ity between VTC regions and regions outside VTC. During functional magnetic resonance imaging (fMRI), subjects passively
viewedmasked and unmasked faces, and following the scan, perceptual biases and stereotypical associations were assessed.
Multi-voxel representations of faces across the VTC, and in the FG and mOFC, reflected stereotypically biased perceptions
when faces were unmasked, but this effect was abolished when faces were masked. However, the VTC still retained the abil-
ity to process masked faces and was sensitive to their categorical distinctions. Functional connectivity analyses confirmed
that masking disrupted mOFC–FG connectivity, which predicted a reduced impact of stereotypical associations in the FG.
Taken together, our findings suggest that the biasing of face representations in line with stereotypical associations does not
arise from intrinsic processing within the VTC and FG alone, but instead it depends in part on top-down feedback from the
mOFC during perception.
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We effortlessly extract social information when we encounter
others’ faces, gaining insight into their identity, gender, race
or emotion (Fiske and Neuberg, 1990; Ekman, 1993; Macrae
and Bodenhausen, 2000). Such information enables us to better
understand other people and, in the case of social categories,
can often provide a lens for social interaction and a founda-
tion for stereotyping and prejudice. The right fusiform gyrus (FG)
plays a key role in faces’ social perception, helping represent a
face’s identity, gender, race and emotion (Kanwisher and Yovel,
2006; Contreras et al., 2013; Wegrzyn et al., 2015) and showing
a high sensitivity to faces’ social category cues (Freeman et al.,
2010; Stolier and Freeman, 2017).

Increasingly, social cognitive processes such as stereotypes,
attitudes and goals have also been demonstrated to play a
role in faces’ initial social perception (Adams et al., 2011). For
instance, numerous studies have demonstrated that the per-
ception of faces may be influenced by stereotypes (Hugenberg
and Bodenhausen, 2004; Johnson et al., 2011; Freeman et al.,
2011b), motives and intergroup bias (Caruso et al., 2009; Ratner
et al., 2014), social dominance orientation (Ho et al., 2013), visual
context (Freeman et al., 2013, 2015) and political and economic
factors (Krosch et al., 2013; Krosch and Amodio, 2014), among
others. Perceivers’ use of various forms of contextual informa-
tion in perceiving faces’ emotion in particular has long been
recognized (Russell, 1997; Barrett et al., 2011).
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Among the social cognitive processes that may influence
perception, stereotypes and other kinds of social-conceptual
knowledge may play a pronounced role. Stereotypes are learned
semantic associations related to social categories, which are
acquired fromone’s social environment and not necessarily con-
sciously endorsed (Macrae and Bodenhausen, 2000). A complex
system of neural regions plays a role in multiple aspects of
stereotyping, prejudice and intergroup biases (Knutson et al.,
2007; Mitchell et al., 2009; Quadflieg et al., 2009; Contreras et al.,
2012; Amodio, 2014; Hehman et al., 2014; Freeman and Johnson,
2016; Mattan et al., 2018; Bagnis et al., 2019). In the context of
initial social perceptions, current models such as the dynamic
interactive (DI) model propose that, during the perception of
another person, themedial orbitofrontal cortex (mOFC) accesses
social-conceptual associations (including stereotypes) and pro-
vides top-down feedback to evolving face representations in
right ventral temporal cortex (VTC) regions, particularly the right
FG (Freeman and Ambady, 2011; Freeman and Johnson, 2016).
Such mOFC top-down modulation would allow prior knowledge
and social expectations to adaptively constrain face-related FG
representations. Indeed, recent studies have shown that the rep-
resentational structure of faces’ multi-voxel response patterns
in the FG partly reflects expectations and social-conceptual
knowledge, including stereotypes (Stolier and Freeman, 2016;
Brooks et al., 2019). More generally, studies have demonstrated
the impact of a variety of social cognitive biases on FG activity
(Van Bavel et al., 2008; Ratner et al., 2012; Brosch et al., 2013; Kaul
et al., 2014; Bagnis et al., 2020).

These social-visual interactions have been argued to draw on
domain-general neural and computationalmechanisms, similar
to those involved in top-down modulation of object recogni-
tion. Consistent with this perspective, as with social perception,
in object perception, multi-voxel response patterns in the VTC
have also been found to reflect not only visual attributes but
also abstract semantic relationships between object categories
(Khaligh-Razavi and Kriegeskorte, 2014; Jozwik et al., 2017; Storrs
et al., 2017). Several studies support the view that mOFC–FG
interplay may drive social-conceptual impact on perception of
faces. For instance, neuroimaging studies suggest that themOFC
provides perceptual priors for object-recognition processes in
the VTC and FG (Bar, 2004; Bar et al., 2006; Summerfield and
Egner, 2009), and some object-recognition signals in the mOFC
have been shown to temporally precede those in the VTC and FG
using magnetoencephalography (Kveraga et al., 2007). Moreover,
expectations about faces in particular enhance top-down effec-
tive connectivity from the mOFC to the FG (Summerfield et al.,
2006; Summerfield and Egner, 2009).

An alternative possibility is that social-conceptual impact on
the FG may arise gradually over extended periods of time via
chronic mOFC-FG signaling, such that face-related FG represen-
tations come to conform to those signals on their own and no
longer require top-down feedback during real-time perception
(e.g. Khaligh-Razavi and Kriegeskorte, 2014; Jozwik et al., 2017).
As such, social-conceptual knowledge would come to manifest
in the FG and other VTC regions in a more permanent manner.
Critically, this alternative account diverges from the former in its
prediction as to whether the impact of social-conceptual knowl-
edge on face-related FG representations would persist even after
functional connection with the mOFC has ceased.

One way to distinguish between these accounts and clar-
ify the role of mOFC feedback in stereotypical impact on face
perception is through backward masking. Backward mask-
ing involves a brief presentation of a target stimulus that is
immediately replaced by a masking stimulus, which results

in the target not being consciously reported by participants.
Although masking renders visual stimuli subjectively invisi-
ble, VTC regions still exhibit extensive perceptual encoding
of the stimuli (Dehaene and Naccache, 2001; Moutoussis and
Zeki, 2002). However, the extent of reentrant feedback into VTC
regions is extremely reduced during the processing of masked
stimuli (Dehaene and Naccache, 2001; Dehaene and Changeux,
2011; Baars et al., 2013). Given that frontal interactions with VTC
are reduced under masked exposures, masking should reduce
if not eliminate the social-conceptual impact on face-related FG
representations—if indeed such impact depends on mOFC–FG
interactions during perception. Previous work has shown that
social-conceptual knowledge affects face perception and FG rep-
resentational structure automatically and without explicit task
demands (Stolier and Freeman, 2016; Freeman and Johnson,
2016; Brooks et al., 2019). Here, we use backwardmasking to pro-
vide evidence that such automatic impacts due to stereotypes
do not arise from VTC alone but require real-time input from
outside VTC, namely the mOFC.

Numerous studies have demonstrated an impact on face per-
ception due to social-conceptual processes, ranging from stereo-
types to emotion concepts and person knowledge, among others
(for review, Freeman et al., 2020). In the present study, we make
use of one well-studied impact of social-conceptual knowledge
on face perception involving gender stereotypes. Men tend to be
stereotyped as aggressive, and women tend to be stereotyped
as docile; such stereotypical associations lead perceptions of
male and female faces to be biased toward anger and happi-
ness, respectively (Hess et al., 2000, 2004; Brooks et al., 2018).
Moreover, individual differences in the strength of these stereo-
typic associations (male=angry and female=happy) predict the
extent of an individual’s perceptual bias, i.e. male faces per-
ceived angrier and female faces perceived happier (Brooks et al.,
2018). Neuroimaging studies have revealed that the representa-
tional structures of male and female faces in the FG and mOFC
are biased in a consistent manner, whereby male and female
faces evoke neural patterns more similar to the neural patterns
associated with anger and happiness, respectively (Stolier and
Freeman, 2016). Moreover, such effects correlate with individ-
ual differences in the strength of stereotypical associations. In
the present study, we examined to what extent this stereotyp-
ical biasing in neural pattern similarity structure persists even
when reentrant feedback to the VTC is relatively restricted via
masking. Our aim is to provide evidence that mOFC–FG inter-
play is a mechanism by which stereotypes exert their influence
on how faces are visually represented.

Materials and methods

Subjects

Forty adult, right-handed subjects were recruited from the New
York City area (24 female; mean age=23.38 years; 13 White, 7
Black, 9 Asian and 11 other). Subjects were financially compen-
sated for participation. All subjects provided informed consent
in a manner approved by the New York University Institutional
Review Board and had no fMRI contraindications. One subject
was found to be ineligible for the study after participating and
was excluded. One subject was removed from analyses involv-
ing the stereotype content task for failing to follow instructions
correctly in the task. Five subjects were excluded from fMRI
analyses: two subjects because they demonstrated sensitivity to
the masked stimuli in their conscious responses (see ‘Results’
section), two subjects based on excessive movement and one
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Fig. 1. (A) Example face stimuli. Examples of angrymale, happymale, angry female and happy female face stimuli used in the fMRI, discrimination andmouse-tracking

tasks. fMRI procedure. (B) Masked condition and (C) unmasked condition. In both, each sequence was repeated four times within a trial (totaling 2000 ms).

subject for failing to comply with instructions (failed to make
button responses). This resulted in a final fMRI sample of 34 sub-
jects (22 female; mean age=23.50 years; 12 White, 7 Black, 7
Asian and 8 other).

Stimuli

Face stimuli consisted of 140 faces depicting 70 male individu-
als and 70 female individuals (all White) each displaying angry
and happy expressions. This made for four stimulus condi-
tions: sex (male vs female)×emotion (angry vs happy). These
140 images comprised the full set of directly oriented face stim-
uli for the angry and happy categories from the well-validated
Karolinska Directed Emotional Faces database (Lundqvist et al.,
1998). Using normed ratings from previous validation studies
(Garrido and Prada, 2017), emotional intensity did not dif-
fer between angry vs happy expressions of the male faces
(t(34) =1.16, P=0.253) or angry vs happy expressions of the
female faces (t(34) =0.19, P=0.852); nor did emotional intensity
differ between the angrymale vs angry female targets (t(33) <0.01,
P=0.997) or happy male vs happy female targets (t(33) =1.17,
P=0.250). All stimuli were edited with a black vignette such that
only the face was visible against a black background (Figure 1A).
The stimuli were additionally matched on luminance and con-
trast across the four stimulus conditions using the SHINE tool-
box (Willenbockel et al., 2010). We used black and white visual
noise patterns as backward masks.

Procedure

fMRI task. We employed a backward masking paradigm
adapted for rapid event-related fMRI using a similar procedure
as a previous study (Freeman et al., 2014). Subjects were pre-
sented with four runs (twomasked and two unmasked). Masked
runs always preceded unmasked runs, as unmasked runs
presented first could increase subjects’ sensitivity to masked

targets before their masked presentation. Within masked runs,
each trial consisted of a face stimulus (33 ms), followed by a
pattern mask (167 ms) and a fixation cross (300 ms), which was
repeated four times and totaling 2000 ms (1 TR), see Figure 1B.
Each 2000ms presentationwas treated as one trial. In unmasked
runs, the pattern mask and face stimulus were presented in
reversed order (33 ms visual pattern + 167 ms face stimulus +

300 ms fixation cross), thereby ensuring identical visual infor-
mation across masked and unmasked conditions (Figure 1C).
Within each run, half of the face stimuli were presented twice
along with 77 null events (2000ms fixation cross). The particular
stimulus ordering in each conditionwas counterbalanced across
subjects. All events within runs were sequenced in a manner to
optimize the efficiency of event-related BOLD signal estimation
using optseq2 (Dale, 1999). In order to maintain subjects’ atten-
tion, subjects were asked to report via button press whenever
the fixation cross was blue (25% of trials). Subjects were not
asked to attend to the gender or emotion of the faces during
this task.

Masked discrimination task. To provide an objective measure
of sensitivity to the face stimuli during masked presentations,
we used a visual discrimination task. Following the fMRI task,
while still in the scanner, subjects were presented with each
of the faces used in the fMRI task. They were told in advance
that they would be presented with masked faces and instructed
to categorize their gender as accurately as possible. The stim-
uli were presented in the identical procedure to how they were
presented in the masked condition of the fMRI task, except
here trials were self-paced and subjects were prompted for a
categorization (male or female?) at the end of each 2000 ms pre-
sentation. Each face stimulus was presented once in this task,
totaling 140 trials.

Mouse-tracking categorization task. To measure stereotypical
biases during perception, we used computer mouse-tracking.
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Mouse-tracking paradigmsmeasure the extent of social category
co-activation during categorization tasks. During two-choice
categorization tasks (e.g. angry vshappy), deviation in a subject’s
hand trajectory toward each category response provides an indi-
rect measure of the degree to which that category was activated
during perception. If stereotypical associations link one category
to another (e.g. male to anger), subjects’ perceptions are biased
toward that category and, consequently, their hand trajecto-
ries deviate toward that category response in mouse-tracking
tasks. Mouse-tracking is a well-validated methodology and has
long been used to provide evidence for social-conceptual impact
on face perception, including stereotypes (Freeman et al., 2011a;
Freeman, 2018).

Following the post-scan discrimination task, participants
completed a standard two-choice categorization task, imple-
mented in MouseTracker software (Freeman and Ambady, 2010).
The face stimuli usedwere the same as those from the fMRI task.
On each trial, subjects clicked a start button at the bottom cen-
ter of the screen, which was followed by a face stimulus in the
same location. Subjects were instructed to categorize the face’s
gender (male or female) or emotion (angry or happy) as quickly
and accurately as possible by clicking one of the two response
options located at opposite top-corners of the screen. During
this process, the mouse trajectory was continuously recorded,
which was used to estimate its deviation toward the opposite
response (serving as an index of category co-activation during
perception). Subjects had to make their categorization within
2000 ms of initiating the trial. Subjects completed two blocks,
one gender categorization and one emotion categorization. The
order of the blocks was counterbalanced across subjects, as was
the position of response options (left/right). Each face stimulus
was presented twice: once in each block, resulting in 280 trials
overall.

Stereotype content task. To index subjects’ stereotypical asso-
ciations (male=angry, female=happy), conceptual similarity of
the four categories was assessed with a ratings task used in pre-
vious work examining biases in gender and emotion perception
(Brooks et al., 2018). In four separate randomized blocks for the
four categories (angry, happy, male and female), subjects rated
to what extent each of 30 descriptors including bodily feelings,
thoughts, and actions was conceptually related to the category
in question on a 7-point Likert scale (e.g. ‘on a scale of 1=not at
all to 7=extremely, please rate how well the phrase loud stereo-
typically describes a happy person’). This resulted in a total of
120 trials. As we were interested in subjects’ learned stereotyp-
ical associations, not necessarily what they personally endorse,
subjects were instructed to base their answers on what a typical
American might indicate (to avoid issues of social desirability
bias), as in previous work (Stolier and Freeman, 2016; Brooks
et al., 2018).

Analytic approach

To allow for a comparison between behavioral and neuroimag-
ing data, we used representational similarity analysis (RSA)
(Kriegeskorte et al., 2008). RSA involves the measurement of
the similarity (e.g. correlation) of all pairwise combinations of
conditions in one particular variable (e.g. mouse-tracking data),
which is then compared with other patterns of similarity val-
ues from alternative modalities (e.g. neuroimaging data). In this
way, RSA is a method used to measure the correspondence of
representations across different modalities (Kriegeskorte et al.,

2008). For our present purposes, RSA allows us to assess the
extent to which an individual’s representational space of social-
conceptually shaped perceptions maps across behavioral and
neural modalities. Specifically, we first demonstrated that sub-
jects’ perceptions of faces (asmeasured bymouse-tracking)were
biased by stereotypical associations. We then used RSA to test
the correspondence between such stereotypically biased sim-
ilarity in subjective perceptions with the similarity of faces’
multi-voxel response patterns.

Given our a priori interest in how stereotypical associations
affects ventral-visual representations of faces, we first focused
on multi-voxel response patterns across the entire anatomi-
cal ROI of the right VTC. We subsequently corroborated and
extended the results using whole-brain searchlight analyses
that identified these effects across the brain.

Experimental design and statistical analyses

Stereotype strength. To index each subject’s strength of stereo-
typical associations, we calculated the Pearson correlation
between all pairs of the 30-length vectors of descriptor rat-
ings for each social category in the stereotype content task.
For example, to obtain each subject’s social-conceptual sim-
ilarity between the categories anger and male, we calcu-
lated the Pearson correlation between their anger vector of
30 ratings and male vector of 30 ratings. We then sub-
tracted stereotypically incongruent pairs from congruent pairs
[angry male+happy female] − [angry female+happy male].
This calculation resulted in a score for each subject that rep-
resented the extent to which they held the belief that males
tended to be angrier than women and that women tended to
be happier than men. Scores could range from 2 (stereotypi-
cal bias: male=angry, female=happy) to 0 (lack of bias) to −2
(counterstereotypical bias: male=happy, female=angry).

Subjective dissimilarity matrix (DM). We usedmouse-tracking
data to estimate the extent towhich subjects’ stereotypical asso-
ciations were reflected in their perception of faces. Trials were
excluded if they exceeded the 2000 ms time deadline (2.83% of
trials) or if the response was incorrect (3.70% of trials). We used
standard mouse-tracking preprocessing procedures (Freeman
and Ambady, 2010). All mouse trajectories were rescaled into
a standard coordinate space with [0,0] at the start location
and normalized into 100 time bins using linear interpolation
to enable averaging of their full length across multiple trials.
In order to obtain a by-trial index of category co-activation,
we calculated the maximum perpendicular deviation (MD) of
each trajectory toward the opposite response option. MD in
two-choice mouse-tracking tasks is a long-used measure of the
degree to which the alternate category was co-activated dur-
ing the categorization process (Spivey and Dale, 2006; Freeman
and Ambady, 2010; Stolier and Freeman, 2017; Freeman, 2018).
For example, the degree to which subjects deviated towards the
‘Angry’ response while categorizing male faces can be under-
stood as higher perceptual similarity between angry and male
categories. By using these values in the subjective DM, the DM
comes to reflect the stereotypical biases of subjects’ percep-
tions. The subjective DM can then be used to predict multi-voxel
response patterns showing corresponding biases.

In order to create a subjective DM from the mouse-tracking
data, we followed the procedure of previous work (Stolier
and Freeman, 2016). For each of the four stimulus condi-
tions (angry male, angry female, happy male, happy female),
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Fig. 2. (A) The group-average subjective DM. Warmer colors represent greater dissimilarity. (B) The method by which a subject’s subjective DM was computed. In

this example (Angry Male condition), MD values for the four categories (Female, Male, Angry and Happy), which reflect mouse trajectories’ attraction toward the four

category responses in the mouse-tracking tasks, were used to create a response vector. Similarity in these response vectors was used to calculate pairwise similarity

for the other conditions (Happy Female, Angry Female and Angry Male). In this way, face conditions that elicited similar activation of the Female, Male, Angry and

Happy responses during mouse-tracking were deemedmore similar in a subject’s subjective DM. (C) An illustration of our RSA procedure. Participants’ neural patterns

for each condition were correlated with each other to formulate a neural DM. A subject’s own subjective DM was used to predict this neural DM (when controlling for

the group-average subjective DM depicted in A).

a bias in the subject’s hand trajectory to select the unselected
response on the opposite side of the screen (e.g. spatial attrac-
tion towards ‘Angry’ when categorizing a happy male face) was
calculated as the average MD relative to the maximum possi-
ble MD [MD/max(MD)]. The inverse effect [1−(MD/max(MD)] was
treated as the bias toward the selected response (e.g. bias toward
‘happy’ when categorizing a happy male face). In this way, the
distance of the trajectory toward the unselected versus selected
response served as a proxy for the similarity of the stimulus con-
dition to the four response categories across themouse-tracking
categorization tasks (emotion and gender categorization).

Similarity measurements were calculated for each of the
four conditions for all possible response options (emotion task:
‘angry’ and ‘happy’; gender task: ‘male’ or ‘female’). For each
stimulus condition (angry male, angry female, happy male and
happy female), this resulted in a four-length vector consist-
ing of the similarity values toward each of the four category
responses (angry, happy, male and female). We then com-
puted the similarity between each of the respective four-length
category-similarity vectors using the Pearson correlation dis-
tance (1−r) (Figure 2B), resulting in a 4×4 subjective DM for each
subject (see Figure 2C for example subjective DMs). As such, the
subjective DM for each subject captures the perceptual similar-
ity between each pair of face conditions, in that the faces in
those conditions activated the four response categories in a sim-
ilarmanner throughout the categorization tasks. In this way, the
subjective DM reflects the extent to which social categories were
biased toward one another in subjective perceptions. A group-
average subjective DM was also calculated (Figure 2A) by taking
the mean of all subjects’ similarity vectors and computing Pear-
son distances to produce dissimilarity measures between each
averaged condition vector.

Stereotype congruency DM. We computed a stereotype con-
gruency DM reflecting our theoretical hypothesis that sex and
emotion representations are biased according to their respec-
tive stereotypes. The DM was structured as follows: [1 (happy
male), 2 (angry male); 2 (happy female), 1 (angry female)]. The
cell values are Pearson distances and represent a stronger simi-
larity between the pairs angrymale and happy female compared
to angry female and happy male.

Multi-level regression analyses. Some behavioral analyses
used multi-level regressions. There were conducted using gen-
eralized estimating equations (GEEs), which can incorporate
nested data (repeated face stimuli nested within each subject)
while accounting for the intracorrelations in repeated-measures
designs (Liang and Zeger, 1986). We report unstandardized
regression coefficients (Bs) and Wald Z values.

Discrimination task. The post-scan gender discrimination task
was analyzed using signal detection theory to control for
response bias. We arbitrarily defined signal as male faces. Thus,
the ability to discriminate male and female faces (d′) was com-
puted as the proportion ofmaskedmale faces thatwere success-
fully categorized as male (hits), adjusted for the percentage of
masked female faces that were erroneously categorized as male
(false alarms): d′ = z-score (% hits)—z-score (% false alarms),
with chance performance set at 0±1.74.

fMRI acquisition. Subjects were scanned using a Siemens 3T
Magnetom Prisma with a 64-channel head coil at the New York
University Center for Brain Imaging. Structural images were
acquired using a 3D MPRAGE T1-weighted sequence with the
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following parameters: 2300ms repetition time (TR); 2.32ms echo
time (TE); 0.9 mm3 voxel size; 230 mm field of view (FOV); 192
slices with no gap; anterior–posterior phase encoding direction.
Functional imageswere acquired using amultiband echo-planar
imaging sequence with the following parameters: 2000 ms TR;
35 ms TE; 2 mm3 voxel size; 208 mm FOV; 68 slices with no
gap; anterior–posterior phase encoding direction andmultiband
acceleration factor of 4. Gradient spin-echo field maps were also
acquired in both the anterior–posterior and posterior–anterior
phase encoding directions for use in correcting for potential sus-
ceptibility artifacts. Diffusion-weighted imageswere collected at
the end of the session, but those data are not reported here.

Data preprocessing and pattern estimation. Image preprocess-
ingwas performed using FMRIPREP (Version 1.1.8) (Esteban et al.,
2019), which is based on Nipype 1.1.3 (Gorgolewski et al.,
2011). The T1-weighted (T1w) image was corrected for intensity
non-uniformity using N4BiasFieldCorrection (Tustison et al.,
2010) (ANTs 2.2.0) and used as T1w-reference throughout the
workflow. The T1w-reference was then skull stripped using
antsBrainExtraction.sh (ANTs 2.2.0), using OASIS as target
template. Spatial normalization to the ICBM 152 Nonlinear
Asymmetrical template version 2009c (Fonov et al., 2009) was
performed through nonlinear registration with antsRegistration
(ANTs 2.2.0) (Avants et al., 2008) using brain-extracted versions
of both T1w volume and template. Brain tissue segmentation
of cerebrospinal fluid, white matter and gray matter was per-
formed on the brain-extracted T1w using fast (FSL 5.0.9) (Zhang
et al., 2001)

For each of the four BOLD runs per subject, the following
preprocessing steps were performed. First, a reference volume
and its skull-stripped version were generated using a custom
methodology of fMRIPrep. Susceptibility distortions were cor-
rected using 3dQwarp (Cox and Hyde, 1997) (AFNI). Based on
the estimated susceptibility distortion, an unwarped BOLD ref-
erence was calculated for a more accurate co-registration with
the anatomical reference. The BOLD reference was then co-
registered to the T1w reference using flirt (FSL 5.0.9) (Jenkinson
and Smith, 2001). Motion-correcting transformations, BOLD-
to-T1w transformation and T1w-to-template (MNI) warps were
concatenated and applied in a single step by using antsApply-
Tranforms in ANTs, using Lanczos interpolation.

We estimated the average hemodynamic response per voxel
for each condition (using the 3dDeconvolve procedure in AFNI).
BOLD responses were modeled by using a general linear model
(GLM) with a design matrix that included a total of 12 predic-
tors: 4 predictors for each stimulus condition and 8 predictors
to model effects of no interest (average signal at each time
point attributable to cerebrospinal fluid, white matter, global
signal, linear motion in three directions and angular motion in
three directions). Two separate GLM design matrices were con-
structed. One GLM modeled the four predictors of interest as
angry female, happy female, angry male and happy male faces.
For other analyses that required modeling trials as non-crossed
categories, another GLM modeled the four predictors of interest
as angry, happy, male and female. In both GLMs, all predic-
tors of interest were modeled as boxcar functions across the
duration of each event (2000 ms), during which the stimuli were
presented. The boxcar functions were convolved with a gamma
variate function (GAM in AFNI). The voxelwise t statistics asso-
ciated with each of the four stimulus conditions were averaged
across runs and the resulting maps were z-normalized and used

as whole-brain patterns of activation for each face category for
use with multi-voxel pattern analyses (MVPA).

Multi-voxel pattern analyses. All MVPAs were performed using
PyMVPA (Hanke et al., 2009). Due to an a priori hypothesis regard-
ing multi-voxel response patterns in the right VTC, we defined
an anatomical region of interest (ROI) of the right VTC. The
ROI mask was created using the Harvard–Oxford Cortical Struc-
tural Atlas in FSL and consisted of all atlas regions within the
right VTC, totaling 7345 voxels. In the ROI analyses, the neu-
ral DM was constructed by calculating the Pearson correlation
distance between all condition pairs using all voxels within the
ROI (7345-length vectors). This resulted in a neural DM for each
subject, representing the similarity of neural patterns relating to
different social categories.

In whole-brain searchlight analyses, a searchlight sphere of
123 voxels (three voxel radius) was centered on a given voxel,
which was iterated across all voxels in the brain. At each search-
light, a neural DM was constructed by calculating the Pear-
son correlation distance between all condition pairs for voxels
within the sphere (123-length vectors). In all cases, DMs were
vectorized and comparisons weremade by the way of Spearman
rank correlation so as to not assume a linear relationship. When
a covariate DM needed to be statistically adjusted (e.g. sub-
jective DM and neural DM, while controlling for group-average
subjective DM), multiple regression RSA using rank-ordered pat-
tern vectors was used. For ROI analyses, subjects’ Spearman
rho values or regression beta values were submitted to a one-
sample t-test against 0 (Spearman rho values were first Fisher-z
transformed). For searchlight analyses, the resulting regression
beta value was remapped back to the searchlight center voxel,
yielding subject-level maps. These maps were then smoothed
using AFNI’s 3dBlurToFWHM at 6-mm FWHM and tested at the
group level by using a one-sample t-test togetherwithmaximum
statistic permutation testing via Randomize in FSL (Winkler
et al., 2014), which tested significance of the raw t statistic over
5000 permutations. The subsequent group-level statistical maps
were thresholded at the P<0.05 level and corrected for multiple
comparisons using threshold-free cluster enhancement (TFCE;
Smith and Nichols, 2009).

Psychophysiological interaction analysis. In order to support
the theoretical assumption that the right VTC has diminished
functional connectivity with frontal regions during masked
relative to unmasked presentation of faces, we performed a
psychophysiological interaction (PPI) analysis. To obtain our
seed region, we conducted a whole-brain univariate contrast
of unmasked>masked conditions to identify face-sensitive
regions, i.e. those more responsive to processing unmasked
faces than noise patterns. As this is a univariate analysis, maps
were first smoothed using a Gaussian filter (6-mmFWHM) before
submitting to the whole-brain contrast. To obtain an inclusive
region of the right FG for use as a seed region (not for inferen-
tial purposes), we used a liberal voxelwise threshold of P<0.05
(minimum cluster extent=20 voxels). This analysis revealed an
extensive portion of the right FG (see Results). We used this
right FG cluster as a seed in our PPI analysis, identifying any
neural regions that exhibited enhanced functional connectiv-
ity with the seed region during viewing of unmasked faces as
compared to masked faces. We extracted the average BOLD
series time course across all voxels within the seed region and
deconvolved the time course with a gamma variate hemody-
namic response function (GAM in AFNI). A GLM design matrix
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was constructed with three predictors: the seed time course,
condition (masked=−1, unmasked=1) and, most critically,
the PPI interaction term. The resulting beta values for the PPI
interaction term maps were then tested at the group level by
using a one-sample t-test. Correction for multiple comparisons
was performed using TFCE. The subsequent group-level statisti-
cal maps are, thus, significant at the P<0.05 level and corrected
for multiple comparisons.

Results

Behavioral results

Subjects’ stereotype scores indexed the strength of their stereo-
typical associations, with 2 reflecting strong stereotypical
bias (male=angry, female=happy), 0 a lack of bias and −2
strong counterstereotypical bias (male=happy, female=angry)
(see Materials and Methods). A one-sample t-test confirmed
that overall subjects showed a significant stereotypical bias,
associating men with anger and women with happiness
(M=0.49, SD=0.62), t(37) =4.83, P<0.0001.

To test whether these stereotypical associations were
reflected in subjects’ perceptions of faces (assessed via mouse-
tracking), we regressed maximum perpendicular deviation
(MD) values onto face gender (male=−0.5, female=0.5),
face emotion (angry=−0.5, happy=0.5), subjects’ stereotype
scores (mean-centered) and their interactions using multi-level
GEE regression. There was a significant main effect of emotion,
B=−0.06, SE=0.01, 95% CI [−0.08, −0.04], Z=−5.35, P<0.0001,
which was qualified by a significant gender x emotion inter-
action, B=−0.15, SE=0.02, 95% CI [−0.19,−0.11], Z=−6.95,
P<0.0001. This interaction arose because mouse trajectories for
stereotypically incongruent faces elicited a simultaneous attrac-
tion toward the opposite category response relative to stereo-
typically congruent faces. Specifically, trajectories for angry
female faces (M=0.50, SD=0.54) were more partially attracted
toward the opposite response than trajectories for angry male
faces (M=0.41, SD=0.51), simple B=0.091, SE=0.02, 95% CI
[0.06, −0.12], Z=5.76, P<0.0001; and trajectories for happy
male faces (M=0.43, SD=0.52) were more partially attracted
toward the opposite response than trajectories for happy female
faces (M=0.38, SD=0.49), simple B=−0.06, SE=0.01, 95% CI
[−0.09, −0.03], Z=−4.00, P=<0.0001. These stereotypic con-
gruency effects were further qualified by a marginally sig-
nificant three-way interaction, B=−0.057, SE=0.035, 95% CI
[−0.13, −0.01], Z=−1.68, P=0.093. The gender x emotion inter-
action was exacerbated at higher levels (+1 SD) of stereo-
type strength (B=−0.1852, SE=0.030, 95% CI [−0.24, −0.13],
Z=−6.31, P<0.0001) and attenuated at lower levels (−1 SD)
of stereotype strength (B=−0.113, SE=0.031, 95% CI [−0.17,
−0.05], Z=−3.61, P=0.0003). Thus, subjects with stronger
stereotypical associations linking men to anger and women to
happiness had a greater bias to perceivemale faces as angry and
female faces as happy.

As the three-way interaction effect has been previously
found to be robust in larger samples (Brooks et al., 2018), it is
likely that here the three-way interaction result reached only
marginal significance due to limited statistical power associ-
ated with the more moderate sample size necessary for neu-
roimaging. To confirm this, we repeated the behavioral tasks
(mouse-tracking and stereotype content tasks) in a larger sam-
ple on Amazon Mechanical Turk (N=142, 49 females, mean
age=34.5 years). We conducted an analogous GEE regression
model for this direct replication, and we again observed strong

stereotype congruency effects, i.e. a gender×emotion interac-
tion, B=−0.115, SE=0.0096, 95% CI [−0.13, −0.10], Z=−11.89,
P<0.0001. Moreover, in the direct replication, the three-way
interaction was significant, B=−0.0361, SE=0.0164, 95% CI
[−0.07, −0.004], Z=−2.20, P=0.028. As before, the three-way
interaction arose because the gender x emotion interaction was
exacerbated at higher levels (+1 SD) of stereotype strength
(B=−0.1346, SE=0.0129, 95% CI [−0.17, −0.11], Z=−10.43,
P<0.0001) and attenuated at lower levels (−1 SD) of stereo-
type strength (B=−0.0945, SE=0.014, 95% CI [−0.12, −0.07],
Z=−6.93, P<0.0001). This replication provides additional sup-
port for the behavioral results of our fMRI sample and those of
previous work (Brooks et al., 2018).

Neuroimaging results

One subject reported conscious awareness of the masked faces
and was excluded from analysis. Another subject exhibited per-
ceptual discriminability better than chance (d′ ±1.74) in the
post-scan discrimination task (d′ = 1.77) and was excluded; the
remaining subjects’ d′ were low (M= 0.22, SE= 0.07), ensur-
ing the masked faces were below these remaining subjects’
awareness.

Given our interest in how stereotypical associations are
reflected in right VTC representations, we first conducted ROI
analyses of the right VTC. A stereotype congruency DMwas used
to test for increased neural-pattern similarity for stereotypically
congruent category pairs (angry male, happy female) relative
to incongruent category pairs (angry female, happy male) using
our hypothesized pattern of Pearson distances: [1 (happy male),
2 (angry male); 2 (happy female), 1 (angry female)]. Indeed,
the structure of neural patterns in the right VTC was signifi-
cantly correlatedwith the stereotype congruency DM in both the
unmasked condition (mean rho=0.30 one-sample t(33) =2.80,
P=0.008) and the masked condition (mean rho=0.26; one-
sample t(33) =2.60, P=0.014). Moreover, the correlation of VTC
pattern structure and the stereotype congruency DM did not dif-
fer between the unmasked and masked conditions, t(33) =−0.21,
P=0.83.

These results demonstrate that the right VTC was indeed
sensitive to both the unmasked and masked faces. However,
they do not directly implicate the role of social-conceptual asso-
ciations in neural-pattern structure as it is possible that phys-
ical properties of the face stimuli could still have accounted
for this pattern. Although the conditions were equated on
emotional intensity and low-level visual properties (luminance
and contrast), the structural cues that convey anger and mas-
culinity and that convey happiness and femininity do partially
overlap (Becker et al., 2007). As these cannot be fully equated
(because faces could no longer be reliably categorized), link-
ing effects to individual differences related to the strength of
stereotypical associations provides more direct evidence for
impact on perception when bottom-up and top-down overlaps
are aligned (e.g. Brooks et al., 2018). Thus, although the results
thus far clearly show that the VTC was sensitive not only to
the unmasked faces but also the masked faces, it is ambigu-
ous whether these results reflect the effect of stereotypes or the
effect of overlapping facial features. To test the role of stereo-
types more specifically, we use individual difference analyses to
link each subject’s stereotypically biased perceptions to neural
response patterns.

A subjective DM was constructed for each subject using
their pattern of stereotypically biased perceptual responses to
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faces via the mouse-tracking data (see Figure 2B). The mouse-
tracking data thus far showed that subjects’ perceptions of male
faces were biased toward anger and perceptions of female faces
biased toward happiness, and that these effects were related to
the strength of subjects’ stereotypic associations (male=angry,
female=happy). We used multiple regression RSA to examine
whether the neural-pattern structure in the right VTC reflected
stereotypically biased subjective perceptions. Specifically, for
each subject, we tested whether right VTC neural-pattern struc-
ture was significantly predicted by their subjective DM while
controlling for the group-average subjective DM. Controlling for
the group-average subjective DM is a conservative test that
allows us to isolate the effect of subjects’ own unique biases
in subjective perceptions and eliminate any common contribu-
tions shared across the sample or intrinsic to the stimuli. Multi-
ple regression RSA confirmed that the right VTC neural-pattern
structure conformed to subjects’ own subjective DM while con-
trolling for the group-average DM in the unmasked condition
(mean beta=0.25; one-sample t(33) =2.57, P= 0.015). Critically,
however, no such effect was observed in the masked condition
(mean beta=−0.16; t(33) =−1.74, P=0.091), and in fact, there
was a marginally significant trend in the opposite direction.
(Note that the trend of a negative correlation is likely noise:
negative RSA correlations are uninterpretable and researchers
often preclude them altogether via non-negative least squares
approaches; Khaligh-Razavi and Kriegeskorte, 2014). The corre-
lation in the unmasked condition was also significantly stronger
than that in the masked condition (t(33) =4.89, P<0.0001). Thus,
these results show that individual differences in stereotypically
biased subjective perceptions are reflected in neural patterns
of the right VTC while subjects viewed unmasked faces. When
they viewedmasked faces, however, VTC neural patterns ceased
to reflect these stereotypically shaped individual differences.
This was the case despite evidence that the right VTC clearly
processed the masked face stimuli and was sensitive to their
categorical distinctions.

To explore whether stereotypically shaped subjective
perceptions were reflected in additional regions, we conducted
whole-brain searchlight analyses to identify regions whose
neural-pattern structure conformed to subjects’ own subjec-
tive DM while controlling for the group-average subjective DM.
As shown in Figure 3, in the unmasked condition this anal-
ysis revealed clusters of the mOFC (x=−16, y=58, z=−18,
P=0.0132, 224 voxels; x=4, y=58, z=−14, P=0.0232, 101
voxels) and right FG (x= 49.1, y=−78.2, z=−6.45, P=0.0084,
113 voxels), as well as the medial prefrontal cortex (mPFC)
(x=−10, y=70, z=10, P=0.0032, 940 voxels; x=8, y=72,
z=10, P= 0.0122, 557 voxels). No other regions survived correc-
tion (P<0.05, corrected). In the masked condition, no clusters
emerged that survived correction (P<0.05, corrected). These
results show that, while subjects viewed unmasked faces,
neural-pattern structure in the right FG, mOFC and mPFC
reflected subjects’ unique, individual differences in stereotyp-
ically biased subjective perceptions, but this ceased to be case
while subjects viewed masked faces.

To provide support for our theoretical assumption that feed-
back from frontal regions is reduced during masking, we tested
whether patterns of functional connectivity with face-sensitive
regions are diminished in the masked condition using a whole-
brain PPI analysis. To obtain our seed region, we conducted a
whole-brain univariate contrast of unmasked>masked condi-
tions to identify face-sensitive regions (i.e. more responsive to
unmasked faces than noise patterns) using a liberal threshold
so as to define an inclusive region of the right FG for use as

Table 1. Regions elicited by the whole-brain PPI analysis (P<0.05,
corrected; coordinates denote peak voxel)

Region Voxels x y z P value

Left inferior
frontal gyrus

6691 −40 24 −18 0.0002

Left pre-
cuneus

1231 −6 −56 16 0.0002

Right
precuneus

703 6 −54 16 0.0002

Left angular
gyrus/temporo
parietal
junction

619 −52 −70 26 0.0004

Right middle
temporal
gyrus

521 60 2 −26 0.001

Left amygdala 430 −24 −6 −16 0.0006
Right parahip-
pocampal
gyrus

152 26 −24 −16 0.0074

Right angular
gyrus/temporo
parietal
junction

75 46 −68 40 0.0086

a seed (not for inferential purposes) (voxelwise P<0.05, mini-
mum cluster extent=20 voxels). The contrast revealed sizeable
portions of the right FG (x= 36, y=−54, z=−18, t= 7.58, 1230
voxels) and left FG (x=−38, y=−60, z=−18, t=5.54, 711 voxels).
We used the right FG region as the seed in our PPI analysis, seek-
ing to identify any regions of the brain that showed diminished
functional connectivity with this region during presentation of
masked as compared with unmasked faces. Indeed, as hypothe-
sized and shown in Figure 4, the PPI analysis revealed an exten-
sive portion of the mOFC and, interestingly, a number of other
regions involved in social cognition such as the temporopari-
etal junction and mPFC (see Table 1; P<0.05, corrected). We
also tested whether the PPI effect was observed in the specific
mOFC regions elicited by the whole-brain searchlight RSA. For
each subject, we extracted the PPI interaction term across the
mOFC clusters from the searchlight RSA and submitted them to
a one sample t-test against zero, which confirmed significant PPI
effects (mean beta=2.29; t(33) =3.72, P=0.0007). These results
show that functional connectivity between themOFC (and other
frontal regions) with the right FG was diminished when subjects
viewed masked as compared with unmasked faces, consistent
with previous work on backward masking’s disruption of frontal
interactions with the ventral-visual pathway (e.g. Dehaene et al.,
2001).

We conducted a final analysis to test the hypothesis that
the disruption in mOFC–FG functional connectivity caused by
masking may predict the reduced representation of stereotyp-
ically biased perceptions in the FG. From the searchlight anal-
ysis, for each subject we extracted the beta for the subjective
DM from the right FG cluster (using the model that controlled
for the group-average subjective DM) for the unmasked and
masked conditions, which was used to create a [unmasked
beta−masked beta] difference score. These were then correlated
with the extracted PPI interaction betas from the mOFC (see
above). Indeed, we found that the reduced mOFC–FG functional
connectivity due to masking (PPI interaction betas extracted
from the mOFC) significantly predicted the extent to which
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Fig. 3. Whole-brain searchlight RSA results in the unmasked condition, revealing the right FG andmOFC. At each searchlight sphere, subjects’ own subjective DMwas

used to predict neural-pattern structure, while controlling for the group-average subjective DM. This analysis revealed regions in the right FG (top left), mOFC (bottom)

and mPFC (top right), showing that these regions’ neural-pattern structure reflected subjects’ stereotypically biased subjective perceptions, even when any common

bias shared across subjects or intrinsic to the stimuli are accounted for (P<0.05, corrected). No regions survived correction for this analysis in the masked condition

(P<0.05, corrected).

Fig. 4. Whole-brain PPI analysis eliciting regions whose functional connectivity with the rFG seed region was modulated by masked vs unmasked conditions. A PPI

analysis was conducted using a face-sensitive region of the right FG as a seed, revealing an extensive portion of the mOFC and additional regions involved in social

cognition, including the mPFC (P<0.05, corrected). These regions showed diminished functional connectivity with the right FG when subjects viewed masked as

compared with unmasked faces. See Table 1 for list of regions.

masking reduced the FG’s representation of the subjective DM
([unmasked−masked] difference score), r(32) =0.331, P=0.0279
(one-tailed test for directional hypothesis). This result empiri-
cally links masking’s disruption of mOFC–FG functional connec-
tivity with the reduced representation of stereotypically biased
perceptions in the FG.

Discussion

Behavioral and neuroimaging studies have increasingly demon-
strated that the perception of others’ faces ismalleable to higher
order social cognitive processes, including stereotypes, atti-
tudes and goals. In the present research, we tested whether
mOFC–FG cortical interactions are a mechanism by which
stereotypes exert their influence on face perception. We found
that the impact of one’s unique stereotypical associations on
face-related representations in the right VTC including the right

FG was strong when faces were normally presented. However,
the stereotypical biasing of these representations was disrupted
bymasking, despite the fact that the VTC still retained the ability
to process masked faces and was sensitive to their categorical
distinctions. PPI analyses confirmed that the FG’s functional
connectivity with the mOFC was disrupted despite spared pro-
cessing of masked faces across the VTC. Moreover, the extent of
masking’s disruption of mOFC–FG functional connectivity pre-
dicted a reduced representation of stereotypical associations
in the FG. Critically, response patterns across the VTC and in
the FG and mOFC exhibited a representational structure cor-
related with stereotypically biased subjective perceptions even
when controlling for any common variance across the sample.
Thus, these effects cannot be attributed to intrinsic physical fea-
tures in the face stimuli themselves or common biases that were
shared across the sample; instead, they reflect the impact of an
individual’s unique, idiosyncratic social-conceptual knowledge
on subjective perceptions. Taken together, our findings suggest
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that the effect of an individual’s social-conceptual knowledge
on visual representations of faces does not arise from intrinsic
processing within the VTC or FG alone but instead depends in
part on top-down feedback from the mOFC during perception.

Our findings provide new evidence helping to resolve crit-
ical questions about the neural basis of stereotyping and the
social perception of faces. While stereotypes (and other social-
conceptual knowledge) have recently been shown to affect faces’
multi-voxel representations in the VTC and FG (Brosch et al.,
2013; Stolier and Freeman, 2016; Brooks et al., 2019), it has
remained unclear how persistent stereotypes’ ‘collateral dam-
age’ is on these perceptual brain regions. For example, do
these regions contain face representations that are stereotypi-
cally biased in a relatively permanent manner due to long-term
learning, or are they shifted on-the-fly due to one’s stereotyp-
ical expectations? The current results not only provide a novel
demonstration supporting the latter, more transient biasing, but
they also directly implicate the mOFC in inducing these tran-
sient stereotypical biases. As such, the findings bolster models
of social perception such as the DI model, which propose that
mOFC–FG interplay plays a key role in the social-conceptual
shaping of face perception (Freeman and Johnson, 2016).

Previous evidence in favor of top-down effects due to social-
conceptual knowledge has used correlational techniques, such
as predicting FG representational structure from conceptually
imbued perceptions or conceptual ratings (Stolier and Freeman,
2016; Brooks et al., 2019), or demonstrations that ventral-
frontal regions (e.g. mOFC) take on some of the processing load
of ventral-temporal regions when subjects have expectations
about visual stimuli (Summerfield and Egner, 2009). Addition-
ally, studies have shown that when subjects have expectations
about face stimuli in particular, the mOFC exhibits enhanced
top-down effective connectivity on the FG (Summerfield et al.,
2006; Summerfield and Egner, 2009). The current findings extend
these prior results by providing evidence suggesting that the
social-conceptual biasing of face-related FG representational
structure is driven by functional interactions with the mOFC;
when these functional interactions are disrupted, as withmask-
ing, the FG no longer shows evidence of social-conceptual
impact.

Although our results are broadly consistent with predictive
coding models that stress the importance of prior expectations
during perception (Bar, 2004; Bar et al., 2006; Summerfield and
Egner, 2009; Otten et al., 2017), other models attempting to cap-
ture the conceptual and semantic structure of the VTC including
the FG have taken a theoretical perspective based on deep neu-
ral network architectures. From this perspective, VTC and FG
representations do not require on-line feedback during percep-
tion but instead rely on both information contained within the
stimuli and the supervision signal during learning to incor-
porate semantic information (Khaligh-Razavi and Kriegeskorte,
2014; Jozwik et al., 2017). Accordingly, social-conceptual impacts
should persist in VTC and FG response patterns even when
functional connectivity with the mOFC is disrupted. Although
the results are inconsistent with this perspective, they do not
exclude the possibility that social-conceptual learning modi-
fies intrinsic VTC and FG representations to some extent. For
instance, the mOFC may provide a necessary signal for the
VTC and FG to access social-conceptual knowledge but that
knowledge, in theory, could still be embedded in local represen-
tations. The results clearly show, however, that any accurate
and complete model of the conceptual shaping of VTC and
FG representations ought to account for the role of functional
interactions with the mOFC.

Our findings may also have implications for interventions
seeking to reduce implicit social biases. Lab-based bias inter-
ventions have been found to successfully reduce individuals’
implicit biases, but these effects tend to dissipate after 3–4 days
(Lai et al., 2016). One possible reason for the sustaining effect
of stereotypical associations may not only be that they are
continually reinforced by one’s social environment (e.g. media
representations), but also that perceptions of others’ faces are
biased to be more consistent with one’s stereotypical expec-
tations, which may reinforce those associations as a kind of
‘visual confirmation bias’. If stereotypical associations were to
become intrinsically embedded in local VTC and FG representa-
tions through long-term learning, it is plausible that even after
stereotypical associations were modified at a conceptual level
(e.g. via a bias intervention or changes in the social environ-
ment) that they would persist in the VTC and FG. This might
necessitate bottom-up visually based interventions to ‘recali-
brate’ VTC and FG representations to be unbiased. However, by
providing evidence that response patterns across the VTC and
in the FG no longer reflect stereotypically biased perceptions
once relatively isolated from the mOFC via masking, the results
suggest that if stereotypical associations are modified at a con-
ceptual level then the corresponding representational bias in the
VTC and FG should follow suit. Future research could build on
this work to better characterizemOFC–FG interactions in stereo-
typically biased perceptions, which could inform interventions
aiming to reduce implicit social biases.

This research is not without its limitations. Although the
use of backward masking as a method of reducing functional
connectivity between the VTC and other cortical regions is
well supported by previous work and our PPI analyses con-
firmed the successful disruption, it is still an indirect manip-
ulation. Although overall an effective way to reduce frontal
feedback to the VTC (Dehaene and Changeux, 2011; Baars et al.,
2013), the exact level at which it disrupts frontal feedback in
any given subject cannot be controlled. Future studies could
extend this work using manipulations of functional activity (e.g.
TMS) and more fine-grained measures of temporal dynamics
(e.g. MEG; see Kveraga et al., 2007). Furthermore, while there is
robust evidence showing that masked face stimuli are percep-
tually encoded across the VTC and in the FG (Jiang and He, 2006;
Sterzer et al., 2008; Brooks et al., 2012), future work could extend
our findings by directly manipulating the degree to which such
encoding takes place. Nevertheless, using backward masking in
tandem with multivariate fMRI and RSA may provide a promis-
ing approach to explore the nature of ventral-visual represen-
tations once relatively disconnected from their wider cortical
interactions. Finally, given our perspective that mOFC–FG inter-
play is a mechanism by which any form of social-conceptual
associations—whether gender, racial or age stereotypes; emo-
tion or trait knowledge; or otherwise—exert their influence over
face perception (Freeman et al., 2020), further masking studies
need to test the generalizability of the present results.

In summary, here we provided evidence that the impact
of stereotypes on visual representations of faces in the VTC
and FG does not persist indefinitely via long-term learning
but instead is transiently induced via mOFC–FG interaction.
When that interaction is disrupted, as with masking, VTC
and FG representations no longer show evidence of stereotyp-
ical bias. Thus, these findings suggest that the effect of our
learned social-conceptual associations on visual processing of
faces does not arise from within the VTC and FG alone, but
instead depends in part on interaction with the mOFC during
perception.
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