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A B S T R A C T   

Recognition of others’ identity through facial features is essential in life. Using both correlational and experi-
mental approaches, we examined how person knowledge biases the perception of others’ facial identity. When a 
participant believed any two individuals were more similar in personality, their faces were perceived to be 
correspondingly more similar (assessed via mousetracking, Study 1). Further, participants’ facial representations 
of target individuals that were believed to have a more similar personality were found to have a greater physical 
resemblance (assessed via reverse-correlation, Studies 2 and 3). Finally, when participants learned about novel 
individuals who had a more similar personality, their faces were visually represented more similarly (Study 4). 
Together, the findings show that the perception of facial identity is driven not only by facial features but also the 
person knowledge we have learned about others, biasing it toward alternate identities despite the fact that those 
identities lack any physical resemblance.   

Recognition of other individuals’ faces is essential in life, and people 
have remarkable face recognition ability (Rossion, 2018; Sunday & 
Gauthier, 2018; Young & Burton, 2018). Despite holding numerous 
different individuals’ faces in memory, a healthy adult can almost 
perfectly recognize familiar others within a few seconds (Bruce, 1979, 
1983). Much attention has been paid to the cognitive and neural 
mechanisms underlying this ability (Bruce & Young, 1986; Burton, 
Bruce, & Johnston, 1990; Folstein, Palmeri, Van Gulick, & Gauthier, 
2015; Haxby, Hoffman, & Gobbini, 2000; Maurer, Le Grand, & Mon-
dloch, 2002). Historically, the majority of facial recognition research 
has focused on bottom-up perceptual mechanisms, characterizing the 
visual processes that permit recognition of familiar faces (Johnston & 
Edmonds, 2009). 

However, researchers have also explored how person knowledge 
may play a role in recognizing facial identity (Bruce, 1983; Bruce & 
Valentine, 1986; Gordon & Tanaka, 2011; Young, Flude, Hellawell, & 
Ellis, 1994; Young, Hellawell, & De Haan, 1988). For instance, 
sequential priming studies have been used to investigate conceptual 
influences, where faces are presented following related (e.g., Prince 
Charles and Princess Diana) vs. unrelated faces (e.g., Prince Charles and 
Hillary Clinton) (Bruce, 1983; Bruce & Valentine, 1986). In these 
studies, participants are faster to recognize the second face when pre-
ceded by a face sharing conceptual overlap, suggesting that person 
knowledge has the ability to facilitate successful face recognition (Bruce 

& Young, 1986; Burton et al., 1990). Other studies have demonstrated 
the faciliatory effects of context on face recognition, such as cases where 
the scene in which we encounter a person is conceptually related to our 
stored knowledge about that person (; Gruppuso, Lindsay, & Masson, 
2007; Mandler, 1980; Winograd & Riversbulkeley, 1977). Such research 
shows that prior knowledge activated by a prime or contextual cue can 
speed up the process of recognizing a face, and highlights the role of 
semantic processes in recognizing familiar faces. These findings are 
consistent with connectionist models of face recognition (Bruce & 
Young, 1986; Burton et al., 1990; Burton, Bruce, & Hancock, 1999) and 
current models of person perception (Freeman & Ambady, 2011; 
Freeman, Stolier, & Brooks, 2020), as these models propose an inter-
active role for semantic (or social-conceptual) representations in 
recognizing facial identity. Specifically, according these models, after 
presented with a face, the processing of visual features begins activating 
identity representations (e.g., Hillary Clinton), and these in turn begin 
activating social-conceptual representations, such as personality traits 
(e.g., bold, diligent, competent). Dozens of studies have shown that 
social-conceptual representations in the form of personality-trait attri-
butes can be automatically activated in response to others’ faces (e.g., 
Kidder, White, Hinojos, Sandoval, & Crites Jr, 2018; Macrae & Martin, 
2007). With these social-conceptual representations now activated, such 
models argue that they then provide feedback to earlier representations 
in the system, facilitating the activation of associated identity 
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representations (e.g., bold → Hillary Clinton) and in turn the perceptual 
representation of Clinton’s face. Thus, from this perspective, both visual 
processing and social-conceptual associations can shape the real-time 
evolution of a face’s identity representation, and this allows prior per-
son knowledge and context to adaptively guide face recognition. 

One intriguing possibility that arises from these interactive models is 
the potential biasing effect that may occur when a perceiver incidentally 
associates two different identities with similar person knowledge. For 
instance, if a perceiver happens to associate both Hillary Clinton and 
Elizabeth Warren with similar personality traits (e.g., bold, diligent, 
competent), when such social-conceptual representations are activated 
during the processing of Clinton’s face, they would feed activation back 
to not only the Clinton representation but also Warren’s and all other 
associated identity representations. Thus, during the process of recog-
nizing an individual’s face, person knowledge that is incidentally shared 
with an alternate identity could, in theory, activate that alternate 
identity. This process could bias the face’s perceptual representation 
more in line with that alternate identity. In other words, the conceptual 
similarity between Clinton and Warren in the mind of the perceiver 
could cause Clinton’s and Warren’s faces to be perceived more similarly 
as well. Although such biases in perceiving facial identity are a theo-
retical prediction of current person perception models (Freeman & 
Ambady, 2011; Freeman & Johnson, 2016) and generally consistent 
with the premises of longstanding models of face recognition (Bruce & 
Young, 1986; Burton et al., 1990; Burton et al., 1999), to our knowledge 
they have never been empirically demonstrated. 

In the present research, we test whether person knowledge has the 
power to shape the perception of a face’s identity, biasing it toward 
alternate identities who are believed to be conceptually similar (in terms 
of stored person knowledge) yet lack any actual visual resemblance. To 
do so, we take a representational similarity analysis approach (RSA) 
(Kriegeskorte, Mur, & Bandettini, 2008). RSA allows a comprehensive 
assessment of the degree of correspondence across different levels of 
analysis. Specifically, we assess how the similarity structure of other 
individuals’ identities map onto one another across conceptual, 
perceptual, and visual levels. For our purposes in the current work, we 
use “conceptual” to refer to stored conceptual associations about an 
individual’s personality, “perceptual” to refer to how faces are subjec-
tively perceived (based on participants’ responses), and “visual” to refer 
to objective visual properties measured in face images themselves. 

In three studies (Studies 1–3), we measured conceptual similarity for 
all pairwise combinations of different identities based on participants’ 
person knowledge, as well as how similarly those pairwise combinations 
were perceived (mousetracking study) or visually represented (reverse 
correlation studies). We then tested whether the extent to which any two 
identities are deemed conceptually more similar predicts the extent to 
which faces belonging to those identities are perceived or visually rep-
resented more similarly, even when accounting for any intrinsic physical 
similarity between the two facial identities. In a final study (Study 4), we 
directly manipulated conceptual similarity between pairs of identities 
and measured its corresponding effect on perceptual representations of 
faces, thereby implicating a causal role of person knowledge in identity 
perception. 

1. Study 1 

We first tested whether conceptual similarity (in the form of per-
sonality traits) between familiar individuals predicts perceptual simi-
larity between those individuals. For each participant, perceptual 
similarity was measured for each pairwise combination of 16 widely 
known individuals (e.g., celebrities, politicians) using a computer 
mousetracking technique. Mousetracking is a measure of how multiple 
perceptual categories activate and resolve over hundreds of millisec-
onds, allowing a measure of the early processing of faces before a 
perceptual decision is finalized (Freeman, 2018; Freeman & Ambady, 
2010; Freeman, Stolier, Brooks, & Stillerman, 2018). During two-choice 

mousetracking trials (e.g., a choice between face images of Justin Bieber 
and Vladimir Putin when presented with Putin’s face, Fig. 1), maximum 
deviation (MD) in a participant’s hand trajectory towards an alternate 
category response (on the opposite side of the screen) provides an in-
direct measure of the degree to which the incorrect category was 
simultaneously “co-activated” during perception despite not being 
selected. Synchronized mousetracking and neuroimaging has linked 
such trajectory-deviation effects with neural markers of co-activated 
categories in brain regions involved in perceptual processing (Brooks 
et al., 2019; Stolier & Freeman, 2017). If person knowledge overlaps 
between two identities, we hypothesize, participants’ perceptions will 
be biased toward the other identity when processing either face. 
Consequently, their hand trajectories will deviate toward the alternate 
response for that other identity. 

In the mousetracking task, participants were asked to match the 
identity of a face to the corresponding face as quickly and accurately as 
possible. As shown in Fig. 1, the MD from the straight line connecting the 
start point to the correct response (correct target face) provides an index 
of the perceptual similarity between any two given faces (i.e., the extent 
to which a given target’s face was perceived more similarly to the 
alternate identity). Such biasing effects of person-knowledge overlap 
should hold above and beyond any potential bottom-up physical 
resemblance between the two individuals’ faces. 

1.1. Method 

1.1.1. Participants 
All participants in Study 1 and remaining studies provided informed 

consent in a manner approved by the University Committee on Activities 
Involving Human Subjects at New York University. Given no clear pre-
cedent for calculating sample size, we aimed to collect a sample of n =
200. Two hundred and six individuals living in the US participated via 
MTurk. Thirteen subjects were excluded for not following instructions, 
resulting in a final sample of 193 (56.50% male, 42.50% female, 1.04% 
declined to report; Mage = 34.60 years, SDage = 9.37 years; 67.90% 
White, 16.60% Hispanic, 6.22% Black, 4.15% Asian, 15.18% other). 

To consider the difference in familiarity for each identity pair in our 
models as a potential confound (see Familiarity control in Procedure 
below), we recruited an independent group of raters (n = 51) to evaluate 
their familiarity with each of the 16 target individuals. Eleven partici-
pants were excluded for not following instructions, resulting in 40 final 
raters (65.00% male, 35.00% female; Mage = 36.80 years, SDage = 8.03 
years; 2.50% Asian, 10.00%, Black, 27.50% Hispanic, 2.50% Native 
American, 57.50% White). 

To assess the robustness of our findings, in one analysis we rean-
alyzed our data using conceptual similarity measures derived from an 
independent group of 499 individuals who participated in a previously 
published study (Stolier, Hehman, & Freeman, 2020) (35.1% male, 
61.7% female, 2.40% other, 0.80% declined to report; Mage = 30.70 
years, SDage = 7.15 years; 7.62% Asian, 8.02% Black, 7.41% Hispanic, 
0.80% Native American, 0.60% Pacific Islander, 68.74% White, 4.61% 
other, 2.20% declined to report). 

1.1.2. Stimuli 
In the mousetracking task, we presented the 16 target famous in-

dividuals’ photos, obtained from public-domain websites. In the photos, 
the individuals were directly oriented and posing natural, relaxed facial 
expressions (i.e., mildly smiling or resting). No individuals in the photos 
were wearing glasses, heavy makeup, or had facial tattoos. Facial images 
were greyscaled and matched in terms of approximate face height and 
vertical position of the eyes. Extrafacial information (e.g., upper-body 
clothing and most of the hair) were cropped out. To avoid confounds 
and reduce the impact of gender and racial stereotypes (Freeman & 
Ambady, 2011; Macrae & Bodenhausen, 2000), we selected famous in-
dividuals with identical gender and race, all male and White: Justin 
Bieber, George W. Bush, Bill Clinton, Jimmy Fallon, Ryan Gosling, 
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Ashton Kutcher, Matthew McConaughey, Bill Murray, Bill Nye, Vladimir 
Putin, Keanu Reeves, Robin Thicke, Justin Timberlake, John Travolta, 
and Mark Wahlberg. 

Response options on each mousetracking trial were face stimuli (i.e., 
a photo of the foil identity vs. a photo of the correct identity but different 
from the stimulus photo). For the correct options, we prepared a second 
facial photo for each of the 16 targets, obtained from public-domain 
websites. Faces were directly oriented and depicted natural, relaxed 
facial expressions and contained no glasses, heavy makeup, or facial 
tattoos. Images were greyscaled, matched in terms of approximate face 
height and vertical position of the eyes, and extra-facial information was 
cropped out. 

1.1.3. Procedure 
Mousetracking data were collected on a JavaScript implementation 

of MouseTracker software, implementing a standard two-choice design. 
The 16 face images were each paired with one another, and each pair-
wise combination was presented twice, resulting in 240 total trials. On 
each trial, the response options were two facial images (e.g., Justin 
Bieber’s face and Vladimir Putin’s face), one of which matched the 
identity of the face stimulus. Each pair was presented twice because the 
correct answer alternated between the two identities. On each of 240 
trials, participants clicked on a ‘Start’ button at the bottom-center of the 
screen to reveal a face stimulus, which stayed on the screen until they 
chose one of two response options located in the left and right top cor-
ners by moving the mouse cursor and clicking. Participants were 
encouraged to respond as quickly and accurately as possible. Partici-
pants received a warning message to respond more quickly on trials 
whose duration exceeded 2500 ms. To ensure trajectories were on-line 
with the decision process, participants were instructed to begin mov-
ing the mouse cursor within 1500 ms after starting the trial. If they did 
not begin moving within this time, a message appeared once the trial 
finished encouraging them to begin moving as they make up their mind. 
The order of trials and the position of the correct options (left/right) 
were randomized. At the end of the study, participants were asked to 
report any identities with whom they were unfamiliar. We later 
excluded from analysis any trials involving an unrecognized identity 
(see Mousetracking data preprocessing below). 

To quantify the conceptual similarity among target individuals, we 
aimed to provide converging evidence using a two-pronged approach, 
using both explicit similarity ratings and a measure of personality-trait 
overlap. First, after completing the mousetracking task, participants 
rated the pairwise similarity among the targets.1 Specifically, partici-
pants were asked to rate the pairwise similarity among the 16 targets on 

a scale of 1–7 (“How similar are [person 1] and [person 2]? 1 Not at All 
Similar–7 Extremely Similar”). On each trial, at the top of the screen 
participants were instructed: “We are interested in personality impres-
sions of different individuals. In this task, we ask about personality 
impressions of different well-known individuals, such as politicians and 
celebrities. While you may not know these individuals directly, we ask 
you to report how similar these two individuals are to the best of your 
knowledge and ability. Importantly, go with your gut feeling. We all 
hold snap personality impressions of others constantly, so feel free to 
report what you think about these two people.” The instructions ensured 
that participants would provide a conceptual similarity rating based on 
similarity in personality impressions (rather than, for example, 
appearance or occupation). 

Second, participants rated specific personality traits of targets. Par-
ticipants were asked to rate all 16 targets on each of 15 different traits on 
a 7-point scale (“How [trait] is [person]? 1 Not at all–7 Extremely”): 
adventurous, angry, anxious, assertive, cautious, cheerful, cooperative, 
depressed, dutiful, emotional, friendly, intellectual, self-disciplined, 
sympathetic, trustworthy. We chose these traits to encompass a wide 
range of individual characteristics that people tend to spontaneously 
consider when they evaluate faces (Oosterhof & Todorov, 2008; 
Sutherland et al., 2013) or others’ personality (Goldberg, 1999; Stolier 
et al., 2020; Wiggins, 1979; Wiggins & Pincus, 1992). These 15 traits 
were chosen from 30 traits (“facets”) that compose the Big Five per-
sonality factors (3 traits from each factor) (Costa Jr. & McCrae, 1992). 
For the Agreeableness factor, these included cooperation, sympathy, 
trust; for the Conscientiousness factor, these included dutifulness, self- 
discipline, cautiousness; for the Extraversion factor, friendliness, asser-
tiveness, cheerfulness; for the Neuroticism factor: anxiety, anger, 
depression; and for the Openness to Experience factor: emotionality, 
adventurousness, intellect. These 15 representative facets of the total 30 
were previously found to be able to explain various domains of social 
cognition, including evaluation of both familiar and unfamiliar others 
(Stolier et al., 2020). Participants were instructed: “While you may not 
know these individuals directly, we ask you to report how [trait] each 
person is to the best of your knowledge and ability. Importantly, go with 
your gut feeling. We all hold snap personality impressions of others 
constantly, so feel free to report what you think about the person.” 

For each participant and for each pair of target identities, we 
computed the euclidean distance between the two 15-item trait- 
judgment vectors. Thus, higher values indicate that, for the 15 person-
ality traits assessed, two targets’ personalities are more dissimilar, and 
lower values indicate that they were more similar, conceptually (i.e., in 
a participant’s mind). This procedure permitted the ability to calculate 
two complementary indices of conceptual similarity for each target 
identity pair separately for each subject. When these two conceptual 
similarity measures were acquired, targets’ names were presented, ab-
sent any faces or other person information. As expected, the two simi-
larity measures of person knowledge (i.e., explicit similarity ratings and 

Fig. 1. Conceptual and perceptual similarity matrices for Studies 1–3 and the analytic approach. In each study, conceptual similarity and perceptual similarity were 
assessed for every pair of targets (e.g., Justin Bieber and Vladimir Putin), vectorized, and submitted to multilevel regressions predicting perceptual similarity from 
conceptual similarity values. The overall hypothesis was that a greater conceptual similarity between any two identities (e.g., Bieber–Putin) would correspond to a 
greater bias to perceive the two individuals’ faces more similarly, measured by a greater simultaneous attraction to select both targets during mousetracking (Study 
1) or a greater resemblance in perceptual representations of the two faces estimated using reverse correlation (Studies 2 and 3). In Study 1, two indices of conceptual 
similarity – explicit similarity ratings and similarity in target personality trait judgments (the latter is shown in the figure) – predicted the extent to which a given 
target’s face was perceived more similarly to the alternate identity (indexed by mouse-trajectory maximum deviation in the identity match task). Each participant’s 
own conceptual similarity predicted mouse-trajectory maximum deviation in the facial identity match task (two sample participants’ similarity matrices are shown in 
the figure). Conceptual and perceptual identity-pair similarity matrices are displayed for four representative participants. In Study 2, each participant’s conceptual 
similarity of the two targets predicted the extent to which reverse-correlated images were perceptually more similar, assessed using two approaches: the extent to 
which independent raters could discriminate between the two reverse-correlated images (d’) or a separate group of raters’ visual similarity ratings of the two images. 
In Study 3, each participant’s conceptual similarity of the two targets predicted the extent to which reverse-correlated images were perceptually more similar, 
assessed by calculating the distance between the two reverse-correlated faces in terms of their objective facial features. Separate groups of participants participated in 
Studies 1, 2, and 3. Note that in the matrices for Studies 2 and 3 (reverse-correlation studies), each cell included a different set of participants. Due to the length of the 
task used, each subject was randomly assigned to be asked about a single identity pair (e.g., Bieber–Putin). Face images used in the description of Study 1 are 
copyright-free images presented for illustrative purposes, not the actual stimuli. 

1 Due to a technical error, pairwise similarity ratings of 44 participants were 
not collected. Results from the remaining participants’ data (n = 149, 77.20% 
of all participants) are reported. 
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personality-trait distance) were positively correlated in our participants 
(mean r = 0.28). A one-sample t-test comparing Fisher-Z transformed r 
coefficients to zero revealed a significant correlation between the two 
measures (mean Fisher z = 0.31, t(144) = 13.59, 95% CI [0.27,0.36], p 
< .001). While the positive correlation was strongly significant across 
the participants, indicating that these measures are related to one 
another, the modest correlation size (r = 0.28) is consistent with the 
notion that these are not fully overlapping measures but instead provide 
complementary information about target individuals’ conceptual simi-
larity: one a more global measure of conceptual similarity, and the other 
a specific trait-distance measure using 15 representative traits. 

1.1.4. Mousetracking data preprocessing 
Following standard procedures (Freeman & Ambady, 2010), trajec-

tories were normalized into 100 time bins using linear interpolation and 
rescaled to a standard 2 × 1.5 unit coordinate space. MD of each mouse 
trajectory towards the incorrect response option on the opposite side of 
the screen was calculated as the maximum perpendicular deviation 
relative to an idealized response trajectory (a straight line) drawn be-
tween the observed trajectory’s start and end point. Trials with incorrect 
responses, a response time exceeding 2500 ms, or entailing a face that 
was reported as unfamiliar to each participant, were excluded from 
analysis (9.79% of all trials). 

1.1.5. Pixel-based visual controls 
To account for the potential contribution of bottom-up overlap in 

physical features between images in any given pair of targets (e.g., 
physical similarity between Bieber’s and Putin’s face images used in the 
mousetracking task), we included visual similarity measures as cova-
riates in our regression models. Using this extensive set of diverse visual 
models as covariates ensures that bottom-up visual similarity does not 
confound conceptual similarity. We calculated two similarity measures 
derived from pixel values of target facial images. For the first of pixel- 
based measures, for each pair, we calculated the euclidean distance of 
the two face stimuli’s pixel intensity maps. For the second, we calculated 
for each pair the euclidean distance of silhouette maps (i.e., binarized 
pixel values of face or no face). See Supplementary Fig. 1 for all pairwise 
correlations between pixel-based visual-control covariates and other 
covariates. 

1.1.6. Feature-based visual controls 
We calculated six face-based visual similarity measures that better 

capture similarity in facial features between stimuli. For each face 
image, we estimated (i) the direction of the left and right eyes, (ii) the 
head location, (iii) the head rotation, although note all faces were all 
direct-gaze, center-located, and front-view, (iv) 2D facial landmark co-
ordinates, (v) 3D facial landmark coordinates, and (vi) intensities of 
facial action units (the specific muscle movements corresponding to 
different facial expressions) (although note faces were all ostensibly 
neutral-affect). To estimate these featural measures, we used OpenFace 
2.2.0, a robust face-detection algorithm (Baltrušaitis, Zadeh, Lim, & 
Morency, 2018). Each of the six feature-based visual similarity measures 
was vectorized for each image. We then calculated for each identity pair 
the euclidean distance of each measure. 

1.1.7. Neural-net-based visual controls 
For each pair of images, we calculated three similarity measures 

derived from three computational models. For the first of neural-net- 
based measures, we used a model of object recognition (HMAX) (Rie-
senhuber & Poggio, 1999; Serre, Wolf, Bileschi, Riesenhuber, & Poggio, 
2007). Specifically, we used HMAX C2-layer activation, which simulates 
the neural processing in high-level vision, representing orientation- and 
size-invariant information of an object. We additionally calculated two 
similarity measures using more modern, deep convolutional neural 
networks (DCNN) specialized for face recognition, quantifying the de-
gree to which the faces appeared similar to the DCNNs for each image 

pair. A DCNN has multiple hidden layers of interconnected nodes in 
addition to the input and output layers (“deep”). Many hidden layers are 
connected to only a subfield of the input layer (“convolutional”), 
mimicking the topography (i.e., the specificity in the receptive fields) in 
biological sensory systems. We used two state-of-the-art DCNNs that are 
pretrained using numerous faces: VGG-Face (2.6 million face images of 
2600 identities) (Parkhi, Vedaldi, & Zisserman, 2015) and Google 
FaceNet (200 million face images of 8 million identities) (Schroff, 
Kalenichenko, & Philbin, 2015). Both VGG and FaceNet excel at identity 
recognition and differentiation, even for untrained face images taken 
from an unusual angle or under unusual lighting. A face image fed into a 
DCNN is transformed into a vector in the hyperdimensional space, in 
which relevant features are determined by the neural net. This vector 
encodes the individuals’ facial identity in the image (O’Toole, Castillo, 
Parde, Hill, & Chellappa, 2018). For each pair of images, we calculated 
the euclidean distance between the two vectors. 

1.1.8. Familiarity control 
We removed any trials for which a participant did not recognize an 

identity in question (as indicated subsequent to the task; see Procedure 
above). However, even among identities familiar to a participant, there 
may be graded differences in the level of familiarity across identities. In 
theory, these familiarity differences across identity could affect our 
dependent variable (MD). Specifically, if a participant is more familiar 
with Bieber’s face or his past behaviors, than Putin’s, for example, their 
mousetracking trials involving Bieber as the correct answer (vs. trials 
involving Putin as the correct answer) might reasonably be expected to 
be facilitated, which would lead to smaller MDs in Bieber trials (vs. Putin 
trials). To control for this potential confound, we asked an independent 
group of raters (n = 40) to report how familiar they were with each of 
the 16 target individuals in terms of two types of familiarity: general 
person knowledge (“what he is like and what he did in the past”) and 
facial appearance (“what his face looks like”) (blocked by familiarity 
type, 16 questions each). Both types of familiarity were reported on a 
scale of “Not at All Familiar 1–Extremely Familiar 7” and no face was 
presented during the task (only name presentation). Both measures 
showed a high level of inter-rater agreement (general familiarity: ICC =
0.78, face familiarity: ICC = 0.70), and thus they were averaged sepa-
rately across the independent raters to provide a target-based familiarity 
index, which due to the high inter-rater agreement, can be considered 
sufficiently representative of our primary sample. Expectedly as face 
familiarity and general familiarity should covary, the two familiarity 
measures were positively correlated across the 120 targets (r = 0.70, 
95% CI [0.60,0.78], t(118) = 10.71, p < .001). Thus, we averaged the 
two measures together. For each identity pair presented in the primary 
task, we calculated the difference in familiarity for the two identities and 
included this difference score as a covariate in all regression models. 

1.1.9. Analytic Approach 
We aimed to predict perceptual similarity (MD) from conceptual 

similarity (explicit similarity rating or similarity in trait judgments, both 
measured without any face stimuli) while controlling for potential 
intrinsic visual similarity in the stimuli (overlap in visual properties in 
the faces measured via pixel-, feature-, and neural-net-based similarity) 
as well as any potential familiarity difference between the two identities. 
Perceptual and conceptual similarity values were subject-specific; 
covariates (visual similarity values and the familiarity difference 
score) were identical across subjects and specific to each of the 120 
pairwise combinations of target identities. 

MD for all trials within a subject was rescaled to vary between [0,1] 
such that 0 corresponded to a subject’s largest MD (perceptual similar-
ity) and 1 corresponded to their smallest MD (perceptual dissimilarity). 
We rescaled MD across trials for each participant to consider individual 
participants’ idiosyncratic response patterns in the mousetracking task 
(i.e., some participants may have on average higher MDs than others 
across trials, and some may lower). Without a standardization across 
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participants, the idiosyncrasy in response patterns can add to statistical 
noise. 

Because two trials corresponded to each target pair (e.g., for Bieber- 
Putin pair, one in which Bieber was presented and one in which Putin 
was presented), the two trials’ MD values were averaged together, 
resulting in 120 mean MD values for analysis. These two trials (first and 
second presentation) were strongly positively correlated (r = 0.88, 95% 
CI [0.84,0.92], t(118) = 20.53, p < .001), justifying that they be aver-
aged together to constitute a single perceptual-similarity measure for 
each identity pair. 

Due to the multilevel nature of the data (120 perceptual similarity 
values nested in each subject), we conducted regression analyses using a 
multilevel generalized estimating equations (GEE) framework. GEE in-
corporates nested data while accounting for the inherent dependencies 
in repeated-measures designs (Liang & Zeger, 1986). We report un-
standardized regression coefficients (B) and Wald Z as a measure of ef-
fect size. 

1.2. Results and discussion 

Trials with incorrect responses, a response time exceeding 2500 ms, 
or entailing a face that was reported as unfamiliar to a subject, were 
excluded from analysis (9.79% of all trials). Two GEE multilevel re-
gressions predicting subjects’ own perceptual similarity values (MD) 
from their corresponding conceptual similarity values (indexed sepa-
rately by explicit similarity ratings and euclidean distance via trait 
judgments) revealed a strong positive relationship: B = 0.010, SE =
0.001, 95% CI [0.007, 0.012], Z = 7.53, p < .001 (explicit pairwise 
similarity ratings, Supplementary Fig. 2) and B = 0.006, SE = 0.001, 
95% CI [0.005, 0.008], Z = 9.30, p < .001 (euclidean distances via trait 
judgments, Fig. 1). When we included the models of pixel-, feature-, and 
neural-net-based visual similarity as well as differences in familiarity 
across target identities as additional predictors, the relationship be-
tween conceptual and perceptual similarity remained significant: B =
0.006, SE = 0.001, 95% CI [0.003, 0.008], Z = 4.63, p < .001 (similarity 
ratings) and B = 0.004, SE = 0.001, 95% CI [0.003, 0.005], Z = 6.15, p 

< .001 (euclidean trait distances, Table 1). 
Another way to test our primary hypothesis is to test the overall 

model fit when including conceptual measures vs. omitting them, 
thereby evaluating whether a model that includes conceptual similarity 
can explain the data better than a model that only includes intrinsic 
visual similarity and any potential differences in familiarity (covariate- 
only model). First, we tested whether this covariate-only model signif-
icantly explained the perceptual similarity data. If our measures of 
bottom-up visual similarity actually capture relevant visual information 
that participants utilize for facial identity perception, then the covariate- 
only model should significantly capture variance in perceptual similar-
ity. Indeed, the covariate-only model explained the perceptual similarity 
data significantly better than did an intercept-only model (Wald test for 
model comparison, χ2(23) = 452.00, p < .001). More critically, the full 
model (including conceptual similarity) explained the perceptual simi-
larity data significantly better than did the covariate-only model (χ2(1) 
= 21.47, p < .001). We obtained the same pattern of results using 
euclidean trait distance rather than explicit similarity ratings as the 
conceptual-similarity measure (covariate-only vs. intercept-only model: 
χ2(23) = 510.12, p < .001; full model vs. covariate-only model: χ2(1) =
37.85, p < .001). Together, these results suggest that conceptual person 
knowledge explained how people perceived facial identities above and 
beyond any intrinsic facial similarities across individuals as well as 
potential familiarity differences. 

To further assess the robustness of the primary effect of interest, we 
reran analyses using a third measure of conceptual similarity available 
from a previously published dataset (15-trait-judgment euclidean dis-
tances among the same target individuals), derived from independent 
raters (n = 499) rather than the participants themselves (data available 
at https://osf.io/2uzsx) (Stolier et al., 2020). When using these inde-
pendent raters’ conceptual similarity measures (rather than partici-
pants’ own conceptual similarity measures) and including visual and 
familiarity covariates as additional predictors, GEE regression again 
revealed a strong positive relationship: B = 0.010, SE = 0.001, 95% CI 
[0.008, 0.012], Z = 8.44, p < .001. 

To demonstrate that meaningful individual differences in 

Table 1 
Full Model Statistics in Study 1. Perceptual dissimilarity ([0,1], derived from maximum deviation in the mouse trajectory in a mousetracking task) was predicted from 
individual participants’ own pairwise dissimilarity rating (left) and euclidean distance based on their trait ratings of target identities (right) in two separate GEE 
models.  

Predictor B SE Z p Predictor B SE Z p 

Conceptual: similarity rating 0.006 0.001 4.63 <0.001 Conceptual: trait distance 0.004 0.001 6.15 <0.001 
Pixel: intensity Center <0.001 <0.001 2.40 0.016 Pixel: intensity Center <0.001 <0.001 1.46 0.144 
Pixel: intensity Option 0.001 <0.001 6.22 <0.001 Pixel: intensity Option 0.001 <0.001 7.62 <0.001 
Pixel: silhouette Center <0.001 <0.001 4.61 <0.001 Pixel: silhouette Center <0.001 <0.001 4.98 <0.001 
Pixel: silhouette Option <0.001 <0.001 0.76 0.450 Pixel: silhouette Option <0.001 <0.001 0.98 0.329 
Feature: gaze Center 0.235 0.03 7.74 <0.001 Feature: gaze Center 0.235 0.027 8.61 <0.001 
Feature: gaze Option − 0.162 0.034 4.71 <0.001 Feature: gaze Option − 0.163 0.029 5.55 <0.001 
Feature: head location Center 0.001 0.001 0.56 0.576 Feature: head location Center 0.001 0.001 0.68 0.496 
Feature: head location Option − 0.009 0.001 7.26 <0.001 Feature: head location Option − 0.008 0.001 7.87 <0.001 
Feature: head rotation Center − 0.133 0.032 4.16 <0.001 Feature: head rotation Center − 0.121 0.028 4.27 <0.001 
Feature: head rotation Option − 0.030 0.036 0.84 0.401 Feature: head rotation Option − 0.034 0.031 1.11 0.265 
Feature: landmark 2D Center <0.001 <0.001 5.55 <0.001 Feature: landmark 2D Center <0.001 <0.001 6.66 <0.001 
Feature: landmark 2D Option <0.001 <0.001 0.92 0.357 Feature: landmark 2D Option <0.001 <0.001 0.73 0.463 
Feature: landmark 3D Center <0.001 <0.001 0.85 0.398 Feature: landmark 3D Center <0.001 <0.001 1.01 0.315 
Feature: landmark 3D Option 0.001 <0.001 7.27 <0.001 Feature: landmark 3D Option 0.001 <0.001 8.11 <0.001 
Feature: action unit Center 0.001 0.001 1.05 0.295 Feature: action unit Center 0.001 0.001 1.02 0.309 
Feature: action unit Option 0.003 0.002 1.62 0.106 Feature: action unit Option 0.003 0.001 2.42 0.015 
Neural net: HMAX C2 Center − 0.007 0.002 3.12 0.002 Neural net: HMAX C2 Center − 0.008 0.002 4.41 <0.001 
Neural net: HMAX C2 Option 0.013 0.002 5.70 <0.001 Neural net: HMAX C2 Option 0.012 0.002 6.22 <0.001 
Neural net: FaceNet Center − 0.002 0.001 1.50 0.135 Neural net: FaceNet Center − 0.001 0.001 0.70 0.485 
Neural net: FaceNet Option 0.001 0.001 0.82 0.413 Neural net: FaceNet Option 0.001 0.001 0.77 0.442 
Neural net: VGG Center 0.107 0.035 3.06 0.002 Neural net: VGG Center 0.111 0.031 3.55 <0.001 
Neural net: VGG Option − 0.020 0.042 0.49 0.628 Neural net: VGG Option − 0.056 0.035 1.61 0.108 
Familiarity 0.008 0.006 1.34 0.182 Familiarity 0.009 0.005 1.75 0.081 

Note: The predictors of interest are in the first row (similarity rating: individual participants’ pairwise dissimilarity rating between identities, trait distance: individual 
participants’ euclidean distance of two identities based on trait ratings). In Study 1, face images were presented as options (‘Option’) as well as the center reference 
image (‘Center’) in a perceptual matching mousetracking task. B = unstandardized regression coefficient, SE = standard error, Z = Wald Z. 
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participants’ person knowledge about identities predicted correspond-
ing differences in facial identity perception, two additional analyses 
were conducted. This is because it is possible that the results of the 
analyses thus far could be explained by average conceptual and 
perceptual tendencies across the sample, rather than idiosyncratic 
variability across participants. In a first stringent analysis, we calculated 
a group-average conceptual similarity measure by averaging conceptual 
similarity values across participants and included this as a covariate in 
the regression models. An effect of subject-specific conceptual similarity 
that holds above and beyond the group-average values would show that 
unique differences across participants explain a significant amount of 
the remaining variance in perceptual similarity. While group-average 
conceptual similarity was a positive and significant predictor of 
perceptual similarity (similarity ratings: B = 0.031, SE = 0.004, 95% CI 
[0.023, 0.038], Z = 7.96, p < .001; euclidean trait distance: B = 0.019, 
SE = 0.002, 95% CI [0.014, 0.023], Z = 8.86, p < .001), more critically, 
subject-specific conceptual similarity remained a strong positive pre-
dictor (similarity ratings: B = 0.003, SE = 0.001, 95% CI [0, 0.005], Z =
2.06, p = .039; euclidean trait distance: B = 0.002, SE = 0.001, 95% CI 
[0.000, 0.003], Z = 2.61, p = .009). Thus, while there were certainly 
average tendencies that existed across the sample, there was unique 
variability across participants and these individual differences contrib-
uted to corresponding differences in facial identity perception. 

In a second complementary analysis, we clustered the data by 
identity-pair rather than by subject in the multilevel regression. 
Accordingly, an effect of conceptual similarity would show that within a 
given identity pair (e.g., Bieber–Putin), subjects with stronger concep-
tual similarity (e.g., deeming Bieber and Putin as having similar per-
sonalities) are also those subjects who exhibit stronger perceptual 
similarity (e.g., perceiving Bieber and Putin’s faces as similar). If there 
were no meaningful variability across subjects, then the effect of con-
ceptual similarity would not yield a significant result. Consistent with 
prior work (Brooks & Freeman, 2018), all conceptual and perceptual 
values were first ranked within each subject, thereby removing possible 
differences in overall magnitude or scale in these variables across sub-
jects (i.e., the possibility that some subjects have higher/lower similarity 
values overall or more/less dispersion, across all 120 identity pairs). 
Ranking vs. non-ranking values had no influence on the pattern of re-
sults. Identity pairs’ perceptual similarity values were regressed onto 
their conceptual similarity values with all covariates included, as in the 
main analysis. The results revealed a positive relationship (similarity 
ratings: B = 0.055, SE = 0.010, 95% CI [0.036, 0.074], Z = 5.69, p <
.001, euclidean trait distance: B = 0.055, SE = 0.008, 95% CI [0.040, 
0.070], Z = 7.15, p < .001). Converging with the previous analysis that 
controlled for group-average conceptual similarity, these results show 
that reliable individual differences exist in participants’ person knowl-
edge which manifests as corresponding differences in facial identity 
perception, above and beyond any average tendencies across the 
sample. 

Overall, the findings of Study 1 demonstrate that the extent to which 
a participant believes two targets have a more similar personality pre-
dicts how similarly that participant perceives those targets’ faces to be, 
regardless of whatever physical similarity may exist between the two 
faces. Moreover, the results show that individual differences in a per-
ceiver’s own unique person knowledge predicts corresponding differ-
ences in facial identity perception. 

2. Study 2 

In Study 2 and the remaining studies, we provide converging evi-
dence for the impact of person knowledge on facial identity perception 
using a data-driven approach that is less constrained to particular face 
stimuli. We also provide a stronger test of the hypothesis that the faces 
belonging to target identities believed to have a more similar personality 
are actually “seen” more similarly. To do so, we used a reverse corre-
lation technique. Devised first as a tool to identify stimulus features that 

contribute to a perceptual decision (Ahumada Jr & Lovell, 1971), 
reverse correlation became a valuable approach in vision science (for 
review, see Eckstein & Ahumada, 2002). More recently, reverse corre-
lation gained popularity as a tool to visualize facial characteristics that 
contribute to a decision about social attributes (for reviews, see Brink-
man, Todorov, & Dotsch, 2017; Dotsch & Todorov, 2011). Reverse 
correlation is able to approximate a perceptual representation of a target 
category (i.e., a template or prototype of the category in the observer’s 
mind). For our purposes, ‘perceptual representation’ refers to a visual-
ized mental representation or prototype of facial identity assessed 
through reverse-correlation techniques. In Study 2, we superimpose 
random noise patterns over a single base face and ask participants to 
select which of two noise-altered face images appear to better match a 
target’s face. Averaging the noise patterns reveals an estimate of how a 
target’s face appears in the mind’s eye of a subject. We hypothesize that 
the extent to which a perceiver’s knowledge of two identities’ person-
ality is more similar will correspond to a greater resemblance in that 
perceiver’s representation of their faces. 

2.1. Method 

2.1.1. Participants 
Because reverse correlation tasks require a large number of trials per 

condition, participants were asked to each complete only one identity- 
pair condition (e.g., Bieber and Putin). We aimed to recruit 25 sub-
jects for each identity-pair. A total of 252 individuals living in the US 
participated via MTurk. Two participants were excluded for not 
following instructions, resulting in a final sample of 250 (54.40% male, 
44.80% female, 0.40% other, 0.40% declined to report; Mage = 33.92 
years, SDage = 9.70 years; 79.20% White, 10.80% Black, 3.60% Asian, 
6.40% other). Once reverse-correlated images were generated from the 
subjects, two groups of independent raters were recruited to either 
categorize these images as one facial identity vs. a foil (n = 94; 56.38% 
male, 42.55% female, 1.06% declined to report; Mage = 33.60 years, 
SDage = 9.19 years; 5.32% Asian, 7.45% Black, 20.21% Hispanic, 1.06% 
other, 61.70% White, 4.26% declined to report), or rate all pairwise 
combinations of images on their visual similarity (n = 50; 56.00% male, 
44.00% female, Mage = 39.40 years, SDage = 14.30 years; 2.00% Asian, 
14.00% Hispanic, 82.00% White, 2.00% other). All participants fol-
lowed the instructions, and no participants were excluded from analysis. 

2.1.2. Stimuli 
To create the reverse correlation stimuli, we first chose 5 individuals 

with a range of conceptual similarity (based on the average data from 
Study 1): Justin Bieber, Ryan Gosling, Ashton Kutcher, Matthew 
McConaughey, and Vladimir Putin. Using the face stimuli of Study 1, we 
then created the base face image of each pairwise identity combination 
by morphing the two faces to a 50/50 blend of each identity using 
PsychoMorph (Tiddeman, Burt, & Perrett, 2001). Consistent with pre-
vious reverse correlation studies (Brinkman et al., 2017), we then 
applied to each base image a Gaussian blur with 3-pixel radius, 
removing high spatial frequency information. We then imposed five 
layers of sinusoid noise patterns varying in spatial scale and their 
negative versions using the rcicr R library (Dotsch, 2015). For the 50/50 
base image of each identity pair, we created 400 images comprising of 
200 side-by-side face trials. See Supplementary Fig. 3 for details of 
stimulus preparation and reverse-correlation task procedures. 

2.1.3. Procedure 
The reverse correlation task followed standard procedures from 

previous studies (Brinkman et al., 2017; Dotsch & Todorov, 2011). Each 
participant in the task was assigned one of the 10 pairwise combinations 
of the 5 target identities (e.g., Bieber and Putin). Following the pro-
cedure of prior reverse correlation research involving facial identity 
(Mangini & Biederman, 2004), participants were instructed: “You will 
see pictures of [person A] and [person B] that are warped to the same 
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geometry. That is, their eyes, nose, mouth, hairline, chin, etc. are in 
identical locations. Your task is to discriminate between [person A] and 
[person B]. The task is difficult because of the warping manipulation and 
the visual degradation. Go with your intuition, respond to the best of 
your ability.” On each trial in the reverse correlation task, participants 
were presented with two side-by-side noise-imposed face images (see 
Stimuli above). The task was split into two blocks each of 200 trials. 

A participant in the Bieber-Putin condition, for example, was asked 
to complete 200 trials where they were instructed to choose the face that 
“appears more like Justin Bieber” and 200 trials where they were 
instructed to choose the face that “appears more like Vladimir Putin”. 
The trial order and task identity order were randomized. Following the 
standard preprocessing procedure (Dotsch & Todorov, 2011), we aver-
aged the noise-imposed face selected on each trial for each participants, 
resulting in reverse-correlated images for each of the two identities each 
subject classified. Across all subjects, this resulted in a total of 500 
reverse-correlated images (2 identities × 10 identity pair conditions ×
25 subjects per condition). After completing the reverse correlation task, 
participants answered an explicit pairwise similarity rating question and 
completed the personality trait rating task used in Study 1. However, 
instead of rating the 16 targets as in Study 1, they only rated the two 
targets in their assigned pair condition. 

Image similarity in each participant’s two reverse-correlated images 
was assessed using two complementary methods. One independent 
group of raters (n = 97) categorized the reverse-correlated images by 
identity in a forced-choice task. The 500 reverse-correlated images were 
randomly divided into two sets of 250 reverse-correlated images (each 
derived from 5 identity-pair conditions) and assigned to two different 
subgroups (n = 50 and n = 47). On each trial, participants were pre-
sented with a reverse-correlated image and two names (e.g., “Justin 
Bieber” vs. “Vladimir Putin”) and instructed to decide whether the face 
looks like one person or the other by the corresponding identity. Trials 
were blocked by identity-pair condition. Raters were encouraged to use 
the full set of options (e.g., both “Bieber” option and “Putin” option). 

A separate group of raters (n = 50) rated each of the 250 total pairs of 
reverse-correlated images on similarity. Each rater judged the similarity 
of all 250 reverse-correlated image pairs. Each reverse-correlated image 
pair was generated from an initial subject of the reverse correlation task. 
On each trial, participants were instructed to rate the two images on how 
visually similar they were on a 7-point scale (“Please rate how similar 
the two faces appear. 1 Not at All Similar–7 Extremely Similar”). Raters 
were encouraged to use the full set of options. The origin of the images 
or the underlying identities were not mentioned. 

2.1.4. Analytic approach 
We assessed the relationship between each individual participant’s 

personality knowledge about identities (conceptual similarity) and the 
appearance of their reverse-correlated images (perceptual similarity). 
To do so, we conducted GEE regression analyses testing whether the 
degree of overlap in conceptual knowledge between a given pair of 
identities (e.g., conceptual similarity between Bieber and Putin) corre-
sponds to a biased perceptual resemblance in the appearance of the two 
reverse-correlated images (e.g., how similar Bieber’s and Putin’s 
reverse-correlated images appeared). 

In each regression model, we clustered data by the identity pair to 
consider the inherent variation in physical facial similarity in each pair. 
To further control for the potential effect of baseline similarity between 
the two individuals (e.g., physical facial similarity between Bieber and 
Putin), as in Study 1, we included the model measures of visual simi-
larity between the two original facial photos used to create the morphed 
base image for reverse correlation as well as the familiarity difference 
score between the two identities (see Study 1 Method for details). We 
included all visual similarity measures used in the previous studies: 
pixel- (pixel intensity, silhouette), feature- (gaze, head location, head 
rotation, 2D and 3D landmarks, action units), and neural-net-based 
dissimilarity measures (HMAX C2, FaceNet, VGG-Face) in euclidean 

distance. See Supplementary Fig. 4 for all pairwise correlations between 
all covariates, including the visual-control covariates and familiarity 
covariate. 

Consistent with Study 1, conceptual similarity was measured via two 
complementary indices: the pairwise similarity rating and the euclidean 
distance between the two identities’ 15-item trait rating vectors. 
Perceptual similarity in the reverse-correlated images was assessed via 
two indices from independent raters who evaluated the reverse- 
correlated images. For the first similarity index, independent raters 
categorized the identity of all reverse-correlated images in a two- 
alternative, forced-choice task. The perceptual similarity for a given 
identity pair was provided by independent raters’ average perceptual 
discriminability (d’) of the two reverse-correlated images on the trials 
where they were pitted against one another. Specifically, for each of the 
two reverse-correlated images in an identity pair (e.g., Bieber reverse- 
correlated image and Putin reverse-correlated image), one identity 
was arbitrarily defined as signal (e.g., Putin) and the other as noise (e.g., 
Bieber). For example, a hit would be defined as categorizing a Putin 
reverse-correlated image as Putin, a miss as categorizing a Putin reverse- 
correlated image as Bieber, a correct rejection as categorizing a Bieber 
reverse-correlated image as Bieber, and a false alarm as categorizing a 
Bieber reverse-correlated image as Putin, thereby giving d’ for each 
identity pair (Tanner & Swets, 1954). The average d’ across raters served 
as each identity pair’s index of perceptual similarity. For the second 
perceptual similarity index, another set of independent raters directly 
rated the apparent similarity of all pairwise combinations of reverse- 
correlated images. Mean similarity ratings were recoded such that − 3 
indicated a maximal perceptual similarity and 3 indicated maximal 
perceptual dissimilarity. 

2.2. Results and discussion 

Regardless of the measure used, GEE regressions all revealed that 
conceptual similarity between a given pair of identities strongly pre-
dicted the perceptual similarity of those two identities’ reverse- 
correlated image.2 Ratings of conceptual similarity predicted indepen-
dent raters’ reduced ability to perceptually discriminate (d’) between 
the two reverse-correlated image (B = 0.020, SE = 0.005, 95% CI 
[0.009, 0.030], Z = 3.69, p < .001) and predicted stronger ratings of 
visual similarity (B = 0.029, SE = 0.006, 95% CI [0.016, 0.042], Z =
4.48, p < .001, Supplementary Fig. 5). Euclidean trait similarity also 
predicted independent raters’ d’ (B = 0.015, SE = 0.003, 95% CI [0.008, 
0.021], Z = 4.19, p < .001) and visual similarity ratings (B = 0.014, SE 
= 0.004, 95% CI [0.006, 0.022], Z = 3.55, p < .001, Figs. 1–3). 

When we included covariates (visual similarity estimates and fa-
miliarity difference) between the original facial photos used to create 
the noise-imposed images (prior to morphing) – the relationship be-
tween conceptual and perceptual similarity remained significant in all 
regression models: B = 0.018, SE = 0.006, 95% CI [0.007, 0.029], Z =
3.19, p = .001 (conceptual similarity ratings predicting d’), B = 0.027, 
SE = 0.007, 95% CI [0.013, 0.041], Z = 3.79, p < .001 (conceptual 
similarity ratings predicting perceptual similarity ratings), B = 0.019, 

2 The multilevel regression models in Studies 2–4 initially failed to converge 
due to multicollinearity between a subset of the visual-model covariate pre-
dictors. Visual model covariate predictors were excluded one at a time, starting 
with those with the strongest correlations with other predictors (defined as the 
biggest sum of the absolute value of Fisher-Z-transformed pairwise correlation 
coefficients, which was calculated at each iteration), until each model 
converged. The results reported here describe the models when four (Studies 2 
and 3) and eight (Study 4) visual-model covariate predictors were removed 
following this exclusion rule. Running the models using all other sets of 
excluded visual model covariate predictors did not meaningfully change the 
results. See Supplementary Figures 1, 4, 7, & 10 for pairwise correlations be-
tween all covariates in studies 1–4, respectively. 
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SE = 0.004, 95% CI [0.011, 0.026], Z = 4.98, p < .001 (euclidean trait 
similarity predicting d’), and B = 0.013, SE = 0.004, 95% CI [0.005, 
0.021], Z = 3.12, p = .002 (euclidean trait similarity predicting 
perceptual similarity ratings, Tables 2 & 3). 

We tested, as in Study 1, whether a model that includes conceptual 
similarity vs. omits it better explains the perceptual similarity data. Each 
full model (including conceptual similarity) indeed explained the data 
better than the corresponding model that omitted it (conceptual simi-
larity ratings predicting d’: χ2(1) = 10.16, p = .001, conceptual simi-
larity ratings predicting perceptual similarity ratings: χ2(1) = 14.39, p <
.001, euclidean trait similarity predicting d’: χ2(1) = 24.81, p < .001, 
euclidean trait similarity predicting perceptual similarity ratings: χ2(1) 
= 9.73, p = .002). Expectedly, the covariate-only model also explained 
the data better than an intercept-only model (predicting d’: χ2(8) =
1582.06, p < .001; predicting perceptual similarity ratings: χ2(8) =
78.10, p < .001), indicating that the bottom-up visual model covariates, 
along with the familiarity covariate, accurately captured visual infor-
mation utilized for facial identity perception. These results suggest that 
person knowledge explained perceptions of facial identities above and 
beyond any potential similarity intrinsic to the targets’ faces or differ-
ences in familiarity. 

As the conceptual and perceptual measures in Study 2 were collected 
from separate groups of participants, and ‘conceptual measure’ partici-
pants (those who participated in a reverse-correlation task) contributed 
to only one identity pair, there was no need in Study 2 to conduct 
additional individual-difference analyses (group-average covariate and 
identity-pair clustering). Because our analyses already clustered the data 
by identity pair, these results could only yield a significant result if 
reliable individual differences in conceptual similarity existed across our 
reverse-correlation participants, which manifested as corresponding 
individual differences in perceptual similarity. 

In sum, across multiple converging measures of conceptual similarity 
and measures of perceptual similarity, the findings of Study 2 show that 
individual differences in the extent to which any two targets are believed 
to have a more similar personality predicts a greater approximation in 
how those identities’ faces are perceptually represented in a partici-
pant’s mind (Fig. 3). 

3. Study 3 

Study 2 showed that when a participant regarded two individuals’ 
personalities as more similar, estimated perceptual representations of 
their faces were correspondingly more similar. However, Study 2 

employed a noise-imposing reverse correlation technique which affor-
ded limited analysis of specific facial features driving identification. In 
Studies 3 and 4, we corroborate our findings using a different type of 
reverse correlation technique, in which a face is determined by a large 
set of shape and color features via a face model (Paysan, Knothe, 
Amberg, Romdhani, & Vetter, 2009; Walker & Vetter, 2009). In this 
framework, a face is represented as a vector in a multidimensional face 
space (Valentine, 1991). Not only does a reverse correlation approach 
based on such a multidimensional face model generates more realistic 
faces, but more critically it allows the objective specification of how 
facial features become increasingly resembling as two different identi-
ties’ conceptual similarity increases. 

3.1. Method 

3.1.1. Participants 
As in Study 2, we aimed to recruit 25 subjects for each identity pair. 

We employed the same five well-known White male individuals as target 
identities, again resulting in 10 identity-pair conditions. Two hundred 
and sixty-four individuals living in the US participated via MTurk. 
Fourteen participants were excluded for not following instructions, 
resulting in a final sample of 250 (70.80% male, 28.80% female, 0.40% 
other, Mage = 38.80 years, SDage = 8.83 years, 47.20% White, 39.20% 
Black, 11.20% Asian, 2.00% other). 

3.1.2. Stimuli 
To create the face prototype of each of the five target individuals, we 

used WebMorph (DeBruine, 2018), an upgraded and online adaptation 
of PsychoMorph (Tiddeman et al., 2001). We averaged three images of 
each of the five individuals found on the web, and standardized all five 
images so the faces were front-facing, using OpenFace 2.2.0 (Baltrušaitis 
et al., 2018). We then created the base face image of each pairwise 
identity combination (i.e., the 50/50 blend of each identity for each 
pair). Once we had these morphs, we transformed them into vectors in 
the Basel Face Model face space (Paysan et al., 2009). The Basel Face 
Model employs a multidimensional space in which each dimension 
represents a change in a featural variation on the face’s shape and color 
based on laser-scanned data of actual human faces. To create random 
stimuli for the reverse correlation task, we created variations of each 
morphed face applying previously generated random vectors (Walker & 
Keller, 2019), generating 100 random face pairs varying on shape and 
100 random face pairs varying on color. Two faces in each pair were 
manipulated in the opposite direction in the face space in relation to the 

Fig. 2. Multilevel regression results in Studies 1–3. In each study, conceptual dissimilarity values predicted perceptual dissimilarity values, while controlling for 
multiple measures of objective perceptual dissimilarity of the two facial identities. A positive relationship between conceptual and perceptual dissimilarity was 
observed across studies. For illustrative purposes, the least-squares linear relationship between conceptual and perceptual dissimilarity is plotted for each study. 
Actual analyses were conducted using GEE multilevel regressions. Blue lines denote the average relationship across all participants and targets. For Study 1, lines 
denote slopes for individual participants, representing the relationship between conceptual and perceptual similarity collected within the same participants. Dots 
denote participants in Studies 2–4. Individual lines are not displayed for these studies because conceptual and perceptual similarity was only measured for a single 
identity pair for each participant. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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midpoint of the face space. This step is analogous to the noise-imposing 
procedure on the base morph faces in Study 2. Resulting random faces 
that varied on shape or color resembled either of the two identities, some 
more strongly than the others. As in Study 2, for each 50/50 base face for 
each identity pair, we created 400 images that were paired to each other, 
resulting in 200 side-by-side face trials. See Supplementary Fig. 6 for 
details of stimulus preparation and reverse-correlation task procedures. 

3.1.3. Procedure 
As in Study 2, the task for each identity entailed 200 trials. After data 

collection, we averaged the full set of shape and color parameters of the 
face selected on each trial for each participant, resulting in reverse- 
correlated face vectors for each of the two identities that each 

participant classified. 

3.1.4. Analytic approach 
As in Study 2, we predicted conceptual similarity from perceptual 

similarity via multilevel regressions with the same set of covariates (see 
Supplementary Fig. 7 for all pairwise correlations between all cova-
riates). A key difference was that we calculated perceptual similarity as 
the euclidean distance between the resulting two reverse-correlated 
vectors in the face space for each participant. This euclidean distance 
represented how visually similar the two faces were between the two 
identities at the level of objective facial features for each subject in their 
mind’s eye. 

Fig. 3. Reverse correlation results in Study 2. To provide an example of the pattern of results, reverse-correlated images for one identity pair are depicted (Bieber and 
Putin) separately for high, average, and low tertiles of participants’ conceptual similarity (i.e., overlapping person knowledge) (top). Participants with higher 
conceptual similarity between Bieber and Putin produced reverse-correlated images of Bieber and Putin that exhibited a greater perceptual resemblance, as assessed 
by independent raters’ inability to discriminate between the two reverse-correlated images (bottom left) and their stronger ratings of visual similarity (bottom right). 
Each dot in the scatterplots represents a single reverse correlation task participant, and the solid line denotes the linear fit. The plots are displayed for illustrative 
purposes. Actual analyses were conducted using GEE multilevel regression. 
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3.2. Results and discussion 

GEE regressions tested the relationship between conceptual simi-
larity (assessed separately via similarity rating and euclidean trait dis-
tance) and objective perceptual similarity (assessed via euclidean 
distance between the two reverse-correlated images’ full set of facial 
features in the face space). Indeed, ratings of conceptual similarity be-
tween a pair of identities predicted a greater resemblance between the 
two identities’ reverse-correlated images at the level of their objective 
features (B = 0.016, SE = 0.003, 95% CI [0.010, 0.023], Z = 5.28, p <
.001, Supplementary Fig. 8). Euclidean trait similarity also predicted 
greater resemblance at the level of the reverse-correlated images’ 
objective features (B = 0.006, SE = 0.002, 95% CI [0.003, 0.010], Z =
3.50, p < .001, Figs. 1 & 2). 

When we included various similarity estimates of the original facial 
photos used prior to morphing as well as the familiarity difference 
measure as covariates, the relationship between conceptual similarity of 
any given pair of identities and objective resemblance of their reverse- 
correlated images remained significant (conceptual similarity ratings: 

B = 0.017, SE = 0.003, 95% CI [0.011, 0.023], Z = 5.73, p < .001) 
(euclidean trait similarity: B = 0.006, SE = 0.002, 95% CI [0.003, 
0.009], Z = 3.58, p < .001, Table 4). 

We tested, as in preceding studies, whether a model that includes 
conceptual similarity explained the data better than did the same model 
omitting conceptual similarity. Indeed, the full model explained the data 
better than a model omitting conceptual similarity, both in conceptual 
similarity ratings predicting perceptual similarity (χ2(1) = 32.84, p <
.001) and euclidean trait similarity predicting perceptual similarity 
(χ2(1) = 12.78, p < .001). Expectedly, the covariate-only model also 
explained the data better than an intercept-only model (χ2(8) = 88.14, p 
< .001), indicating that the visual model covariates, along with the fa-
miliarity covariate, were capturing visual information actually utilized 
for perception. These results suggest that person knowledge explained 
how people perceived facial identities above and beyond the similarity 
between individuals’ faces and the level of familiarity. 

The results converged with Study 2 but here used a reverse corre-
lation technique that not only relies on more realistic face images but 
permits objective analysis of featural resemblance. When a participant 

Table 2 
Full Model Statistics in Study 2. Perceptual discriminability (d’) was predicted from individual participants’ pairwise dissimilarity rating (left) and euclidean distance 
based on their trait ratings of target identities (right) in two separate GEE models.  

Predictor B SE Z p Predictor B SE Z p 

Conceptual: similarity rating 0.018 0.006 3.19 0.001 Conceptual: trait distance 0.019 0.004 4.98 <0.001 
Pixel: intensity 0.003 0.001 4.28 <0.001 Pixel: intensity 0.003 0.001 5.68 <0.001 
Feature: gaze − 1.173 0.300 3.91 <0.001 Feature: gaze − 1.071 0.230 4.67 <0.001 
Feature: landmark 2D <0.001 <0.001 0.22 0.829 Feature: landmark 2D <0.001 <0.001 0.63 0.531 
Feature: landmark 3D <0.001 <0.001 1.52 0.130 Feature: landmark 3D <0.001 <0.001 1.79 0.073 
Feature: action unit − 0.035 0.006 5.52 <0.001 Feature: action unit − 0.035 0.005 7.14 <0.001 
Neural net: HMAX C2 − 0.040 0.011 3.58 <0.001 Neural net: HMAX C2 − 0.047 0.008 5.92 <0.001 
Neural net: FaceNet <0.001 0.008 0.01 0.993 Neural net: FaceNet 0.006 0.006 0.96 0.335 
Familiarity − 0.148 0.038 3.93 <0.001 Familiarity − 0.193 0.026 7.47 <0.001 

Note: The predictors of interest are in the first row (similarity rating: individual participants’ pairwise dissimilarity rating between identities, trait distance: individual 
participants’ euclidean distance of two identities based on trait ratings). B = unstandardized regression coefficient, SE = standardized error, Z = Wald Z. 

Table 3 
Full Model Statistics in Study 2. Perceptual dissimilarity ([− 3,3], derived from pairwise dissimilarity ratings) were predicted from individual participants’ pairwise 
dissimilarity rating (left) and euclidean distance based on their trait ratings of target identities (right) in two separate GEE models.  

Predictor B SE Z p Predictor B SE Z p 

Conceptual: similarity rating 0.027 0.007 3.79 <0.001 Conceptual: trait distance 0.013 0.004 3.12 0.002 
Pixel: intensity − 0.002 0.004 0.45 0.652 Pixel: intensity − 0.002 0.004 0.40 0.687 
Feature: gaze 1.680 1.703 0.99 0.324 Feature: gaze 1.737 1.652 1.05 0.293 
Feature: landmark 2D 0.001 0.002 0.26 0.792 Feature: landmark 2D 0.001 0.002 0.24 0.812 
Feature: landmark 3D <0.001 0.001 0.32 0.750 Feature: landmark 3D 0.001 0.001 0.38 0.705 
Feature: action unit − 0.001 0.036 0.04 0.970 Feature: action unit − 0.003 0.035 0.08 0.934 
Neural net: HMAX C2 0.091 0.065 1.40 0.160 Neural net: HMAX C2 0.088 0.062 1.42 0.156 
Neural net: FaceNet 0.005 0.044 0.12 0.905 Neural net: FaceNet 0.012 0.042 0.28 0.776 
Familiarity 0.534 0.213 2.50 0.012 Familiarity 0.502 0.208 2.42 0.016 

Note: The predictors of interest are in the first row (similarity rating: individual participants’ pairwise dissimilarity rating between identities, trait distance: individual 
participants’ euclidean distance of two identities based on trait ratings). B = unstandardized regression coefficient, SE = standard error, Z = Wald Z. 

Table 4 
Full Model Statistics in Study 3. Perceptual face-space distances were predicted from individual participants’ pairwise dissimilarity rating (left) and euclidean distance 
based on their trait ratings of target identities (right) in two separate GEE models.  

Predictor B SE Z p Predictor B SE Z p 

Conceptual: similarity rating 0.017 0.003 5.73 <0.001 Conceptual: trait distance 0.006 0.002 3.58 <0.001 
Pixel: intensity <0.001 <0.001 2.53 0.012 Pixel: intensity <0.001 <0.001 2.09 0.037 
Pixel: silhouette 0.001 <0.001 3.13 0.002 Pixel: silhouette <0.001 <0.001 2.50 0.012 
Feature: gaze − 0.204 0.131 1.56 0.119 Feature: gaze − 0.121 0.144 0.84 0.400 
Feature: head location − 0.014 0.004 3.17 0.002 Feature: head location − 0.011 0.005 2.31 0.021 
Feature: landmark 3D 0.002 0.001 2.72 0.007 Feature: landmark 3D 0.001 0.001 1.91 0.057 
Neural net: HMAX C2 − 0.067 0.025 2.64 0.008 Neural net: HMAX C2 − 0.067 0.028 2.34 0.019 
Neural net: FaceNet 0.004 0.003 1.66 0.097 Neural net: FaceNet 0.005 0.003 1.80 0.072 
Familiarity 0.077 0.022 3.54 <0.001 Familiarity 0.079 0.024 3.26 0.001 

Note: The predictors of interest are in the first row (similarity rating: individual participants’ pairwise dissimilarity rating between identities, trait distance: individual 
participants’ euclidean distance of two identities based on trait ratings). B = unstandardized regression coefficient, SE = standard error, Z = Wald Z. 
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believed a given pair of identities have more overlapping person 
knowledge, their perceptual representations of the two identities’ faces 
became more featurally resembling. 

4. Study 4 

Studies 2 and 3 found that when a participant regarded two in-
dividuals’ personalities as more similar, estimated representations of 
their faces in the mind’s eye of the participant became correspondingly 
more similar. In Study 4, we tested for a causal role of person knowledge 
in impacting facial representations by manipulating rather than 
measuring person knowledge. Participants first learned about novel in-
dividuals, who were either similar to one other (both trustworthy or 
both untrustworthy, Similar Pair) or dissimilar from one other in per-
sonality (one trustworthy and the other untrustworthy, Dissimilar Pair). 
They then proceeded to a reverse correlation task as the one in Study 3, 
which allowed us to assess representations of those individuals’ faces. 
Conceptual similarity was measured for manipulation check via two 
indices – the explicit similarity rating and the euclidean trait distance. 

4.1. Method 

4.1.1. Participants 
Three hundred and thirty individuals living in the US participated via 

MTurk. Eighteen participants were excluded for not following in-
structions, resulting in a final sample of 312 (66.70% male, 33.30% 
female; Mage = 35.10 years, SDage = 9.85 years; 35.30% White, 41.70% 
Hispanic, 12.50% Black, 8.33% Asian, 2.24% other). To consider the 
difference in face-based trait impressions for each identity pair in our 
models as a potential confound (see Analytic approach below), a group of 
independent raters (n = 47) were recruited to judge the 4 unfamiliar 
faces on 15 traits. Ten participants were excluded for not following in-
structions, resulting in 37 final participants (62.20% male, 37.80% fe-
male; Mage = 37.90 years, SDage = 7.9 years 3; 24.30% Black, 46.00% 
Hispanic, 29.70% White). 

4.1.2. Stimuli 
To generate face stimuli, we first selected four identities that are not 

well known to people in the US. In order to approximately match the 
overall characteristics between faces used in Studies 1–3 and Study 4 
(except for participants’ familiarity with the faces), we selected four 
White males who are famous in another White-majority, industrialized 
country (i.e., Switzerland) who are in a similar age range and pro-
fessions with to those in Studies 1–3: Didier Burkhalter (former politi-
cian), Pierre de Meuron (architect), Vincent Perez (actor), and Anatole 
Taubman (actor). As in Study 3, we first created each of the four in-
dividuals’ faces by averaging three different images of the person using 
WebMorph (DeBruine, 2018). We then created a 50/50-blend morph 
between two identities for each pair of the total six pairs. Once we had 
the six morphs, we transformed them into vectors in the face space 
(Paysan et al., 2009) and created random variations of each of the 
morphed faces (i.e., 100 random face pairs varied on shape and 100 
varied on color). As in Studies 2 and 3, for each identity pair we created 
200 side-by-side face trials. See Supplementary Fig. 9 for details of 
stimulus preparation and reverse-correlation task procedures. 

To vary the personality of identities, we used previously validated 
sentences that describe 2375 social behaviors (Mende-Siedlecki & 
Havlicek, in preparation). In that work, participants had rated all 2375 
behaviors on trustworthiness, among other dimensions. We prepared 
four sets of sentences, selecting two sets from sentences rated as trust-
worthy (e.g., “Helped a neighbor fix his roof”) and two sets from sen-
tences rated as untrustworthy (e.g., “Took a few bills from the register at 
work”). Each set consisted of 20 sentences. For each participant, two of 
these four sets would be randomly chosen and used to describe two 
novel identities in the experiment (i.e., trustworthy and trustworthy, 
untrustworthy and untrustworthy, trustworthy and untrustworthy). 

4.1.3. Procedure 
To directly manipulate participants’ person knowledge of target 

identities, we used multiple stages: a prescreening stage, learning stage, 
conceptual-similarity task (manipulation check), and reverse correlation 
task. First, in the prescreening stage, participants were screened for their 
knowledge of the four target identities. Participants were asked to 
choose the face of each of the four identities in a series of multiple- 
choice questions, given each name. They were also asked to choose 
the occupation of each of the four identities. Only those who indicated 
that they did not know the answers to all questions were allowed to 
participate. 

Each participant then learned about two of the four identities: either 
trustworthy and trustworthy (Similar Pair), untrustworthy and un-
trustworthy (Similar Pair), or trustworthy and untrustworthy (Dissimi-
lar Pair). Participants were presented with a series of 20 slides (10 trials 
per identity), one at a time, with the face and a sentence describing the 
person’s behavior below the face. The behavior was either trustworthy 
or untrustworthy, depending on the randomly assigned personality. For 
each target person, four face images were presented in randomized order 
across presentations. For each slide, which involved one face image and 
one behavioral sentence, participants were encouraged to “visualize the 
person doing the action described in the sentence as vividly as possible.” 
The learning stage consisted of two blocks, each of which presented one 
of the two individuals’ face image with their behaviors. Participants 
were then asked to choose the correct face corresponding to each of the 
two names they previously learned. They were also asked to choose the 
behavior that the two individuals were more likely to engage in; two 
options were given, one describing a trustworthy behavior and the other 
describing an untrustworthy behavior. 

In the conceptual similarity task, participants answered an explicit 
pairwise conceptual similarity rating question (1 question per identity 
pair) and completed the personality trait rating task (15 traits per 
identity) about the two learned identities. The resulting conceptual 
similarity values served as a manipulation check that the Similar Pair 
condition successfully induced greater conceptual similarity than the 
Dissimilar Pair condition. 

The reverse correlation task then followed the same procedures as 
Study 3, resulting in reverse-correlated images for each of the two 
identities for each participant. Across all participants, this resulted in a 
total of 312 images (2 identities × 6 identity pair conditions × 26 par-
ticipants per condition). As in Study 3, we calculated the euclidean 
distance between the resulting two face vectors in face space for each 
participant, a value representing how similar the two faces were be-
tween two identities at the level of their objective features. 

4.1.4. Analytic approach 
We hypothesized that reverse-correlated images in the Similar Pair 

condition would exhibit a greater resemblance (i.e., higher levels of 
visual similarity) than those in the Dissimilar Pair condition. Thus, we 
conducted GEE multilevel regression analyses, where perceptual simi-
larity was regressed onto Similar/Dissimilar Pair condition. As in the 
preceding reverse correlation studies (Studies 2–3), in each model we 
clustered data by identity pair, and included all visual similarity mea-
sures as additional predictors, so that the baseline visual similarity of the 
original facial photos was controlled for. 

In Study 4, unlike in Studies 1–3, we randomly assigned person 
knowledge to identities to remove any effect of preexisting person 
knowledge related to target individuals. However, it remains possible 
that differences in the facial appearance of the four targets could, in 
theory, still exert some impact. We asked an independent group of raters 
(n = 37) to make trait judgments of the four targets’ faces. We assessed 
the same 15 traits used for measuring the personalities of the famous 
targets in the preceding studies (adventurous, angry, anxious, assertive, 
cautious, cheerful, cooperative, depressed, dutiful, emotional, friendly, 
intellectual, self-disciplined, sympathetic, trustworthy) for use here with 
the four unfamiliar faces: “How [trait] is this person? Not at All [trait] 
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1–Extremely [trait] 7”. Only those who were unfamiliar with all four 
targets could participate in the study (this was verified as part of the 
screening procedure). Trait ratings showed a high level of interrater 
agreement (ICC = 0.70), thereby justifying our use of mean rating per 
target identity as a representative measure of its trait-related facial 
appearance. We calculated euclidean distances between trait vectors (15 
coordinates) for every identity pair, thereby representing the extent to 
which any given pair of identities were similar/dissimilar in trait-related 
facial appearance, and included this distance as an additional covariate 
in our regression models. See Supplementary Fig. 10 for pairwise cor-
relations between all covariates. 

4.2. Results and discussion 

Confirming our manipulation, participants assigned to the Similar 
Pair condition deemed the pair of identities as having a higher con-
ceptual similarity than those in the Dissimilar Pair condition, as indexed 
by both conceptual similarity ratings (n = 156 each group; Welch’s 
unequal variances t-test: MDissimilar = 9.330, SEDissimilar = 0.422, MSimilar 
= 4.870, SESimilar = 0.146; t(310.00) = 10.02, CI 95% [3.59,5.34], p <
.001) and euclidean distance in trait space (MDissimilar = 3.330, SED-

issimilar = 0.145, MSimilar = 5.310, SESimilar = 0.095; t(268.02) = − 11.48, 
CI 95% [− 2.32,-1.64], p < .001). 

A GEE regression predicting similarity in objective facial features 
from the person-knowledge condition (Similar Pair = − 0.5, Dissimilar 
Pair = 0.5) revealed the hypothesized effect, B = 0.012, SE = 0.005, 95% 
CI [0.002, 0.022], Z = 2.41, p = .016 (Fig. 4B, Table 5). Participants who 
learned that the identity pair had dissimilar personalities had more 
distinct perceptual representations of the two individuals’ faces at the 
level of their objective features (M = 0.451, SE = 0.007), as compared to 
participants who learned that the pair had similar personalities (M =
0.439, SE = 0.006). Including as covariates the visual similarity esti-
mates of the original facial photos as well as similarity in trait-related 

appearance of the faces (along the 15 traits) led to identical results. 
Moreover, the full model that includes conceptual similarity explained 
the data better than a model that omits conceptual similarity (χ2(1) =
5.79, p = .016). Note that the covariate-only model (omitting concep-
tual similarity) also explained the data better than an intercept-only 
model (χ2(4) = 59.60, p < .001), indicating that our visual model 
covariates faithfully captured visual information participants were uti-
lizing for facial identity perception. 

An alternative explanation for the effects may be that participants in 
the Similar Pair vs. Dissimilar Pair conditions differed in extraneous 
motivational or attentional processes. For example, when both identities 
had similar personalities, participants may not have been as motivated 
to discriminate between them; when the identities had dissimilar per-
sonalities, participants might have paid closer attention to their differ-
ences. If participants in the Similar Pair condition were less motivated or 
attentionally engaged, it is reasonable to expect that they would have 
exhibited worse performance in the learning stage, such as a diminished 
accuracy in matching identities to related behaviors, or would have been 
overall slower to respond on trials in either the learning stage or the 

Fig. 4. The analytic approach (A) and reverse correlation results (B) in Study 4. To test the causal effect of person knowledge on facial identity perception, we 
directly manipulated person knowledge and estimated participants’ mental representations of the two individuals’ faces (A). Participants learned about two novel 
identities whose personalities were either similar (i.e., both individuals were trustworthy, or both untrustworthy) or dissimilar to each other (i.e., one individual was 
trustworthy, and one was untrustworthy). They were assigned to one random face pair (two faces), both of which they found unfamiliar with. In the condition where 
two individuals’ personalities were similar, participants’ representations of their faces were more similar, compared to the condition where two individuals’ per-
sonalities were dissimilar, as assessed by the euclidean distance between two reverse-correlated face vectors in a multidimensional space of faces (B). Actual analyses 
were conducted using GEE multilevel regressions. The violin plots represent the distribution of the perceptual dissimilarity between two target individuals’ reverse- 
correlated images derived from each participant’s responses. Each participant corresponds to a single datapoint. The black diamonds indicate the means of the 
perceptual dissimilarity metric in each condition. Error bars denote SEM. 

Table 5 
Full Model Statistics in Study 4. Perceptual face-space distance was predicted 
from the Similar/Dissimilar Pair condition (i.e., the experimental condition that 
decided two target identities were either similar or dissimilar) in a GEE model.  

Predictor B SE Z p 

Conceptual: Similar/Dissimilar Pair 0.012 0.005 2.41 0.016 
Feature: head rotation − 0.093 0.065 1.44 0.151 
Feature: landmark 2D <0.001 <0.001 1.24 0.214 
Feature: action unit 0.005 0.003 1.99 0.046 
Face trait distance − 0.012 0.003 4.45 <0.001 

Note: The predictor of interest is in the first row (a binary variable indicating 
whether two individuals’ personalities were manipulated to be perceived similar 
vs. dissimilar). 
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reverse-correlation task. However, there was no evidence for this pos-
sibility. Participants in the Similar Pair condition did not differ from 
those in the Dissimilar Pair condition on any performance measures in 
either the learning stage or the reverse-correlation task, including when 
matching faces to behaviors in the learning stage (accuracy: MDissimilar =

0.73, SEDissimilar = 0.02, MSimilar = 0.77, SESimilar = 0.02, t(305.75) =
− 1.53, CI 95% [− 0.09,0.01], p = .127; response times: MDissimilar =

5771.01 ms, SEDissimilar = 559.30 ms, MSimilar = 5923.51 ms, SESimilar =

508.44 ms, t(305.24) = − 0.20, CI 95% [− 1635.05,1330.04], p = .840), 
when matching faces to names in the learning stage (accuracy: MDissi-

milar = 0.62, SEDissimilar = 0.03, MSimilar = 0.59, SESimilar = 0.03, t 
(307.81) = 0.69, CI 95% [− 0.06,0.12], p = .491; response times: MDis-

similar = 5431.01 ms, SEDissimilar = 996.90 ms, MSimilar = 5739.62 ms, 
SESimilar = 517.97 ms, t(231.50) = − 0.28, CI 95% [− 2514.92,1897.69], 
p = .783), or when selecting noise-imposed images in the reverse- 
correlation task (response times: MDissimilar = 1327.92 ms, SEDissimilar 
= 33.80 ms, MSimilar = 1335.18 ms, SESimilar = 32.80 ms, t(309.72) =
− 0.15, CI 95% [− 99.71,85.18], p = .877). These additional analyses 
cast doubt on the possibility that participants in two conditions differed 
in motivational or attentional processes, instead suggesting that genuine 
differences in the similarity/dissimilarity of person knowledge affected 
facial identity perception. 

Thus, here we found that when two newly learned identities were 
similar in personality, the perceptual representations of their faces 
overlapped to a greater extent, compared to when the two newly learned 
identities were dissimilar in personality. These results suggest that 
person knowledge affected how similarly or dissimilarly participants 
perceived facial identities above and beyond any intrinsic similarities in 
the faces themselves. Crucially, because we randomly linked target 
identities’ facial appearances with different personalities, these results 
suggest that the impact of person knowledge on facial identity percep-
tion is causal in nature: Our knowledge of others affects facial identity 
perception, independent of those individuals’ facial features. 

5. General Discussion 

Across four studies, we found that knowledge of others’ personalities 
shapes the perception of their facial identities. We assessed the effect of 
person knowledge by mapping measures across conceptual and 
perceptual levels. Using mousetracking, we found that perceivers’ own 
unique conceptual similarity among identities predicted biases in 
perceiving facial identities, even while acknowledging intrinsic physical 
similarity among faces (Study 1). Using converging reverse correlation 
techniques, we found that representations of individual faces became 
perceptually more similar when any two individuals were deemed to be 
more similar in their personalities (Studies 2 and 3). Finally, we showed 
that participants who thought that two identities had a similar vs. dis-
similar personality had representations of faces that were correspond-
ingly similar vs. dissimilar, implicating person knowledge’s causal role 
on how facial identity is represented (Study 4). Together, converging 
evidence across the process of facial identity perception (mousetrack-
ing) and estimated perceptual representations (reverse correlation) 
suggests that person knowledge has the power to dynamically shape 
facial identity perception, biasing it toward alternate identities despite 
the fact that those identities lack any physical resemblance. 

Previous research has shown that conceptually related face primes or 
contextual cues can facilitate successful face recognition (Bruce, 1983; 
Bruce & Valentine, 1986), and such malleability from conceptual pro-
cesses is consistent with longstanding models of face recognition (Bruce 
& Young, 1986; Burton et al., 1990; Burton et al., 1999). However, prior 
work has left unaddressed the unique perceptual biases that may arise 
when overlapping person knowledge causes the faces of ostensibly un-
related individuals to be perceived more similarly. This premise is 
consistent with connectionist models of face recognition and is theo-
retically predicted by newer person perception models (Freeman et al., 
2020; Freeman & Ambady, 2011). It is also consistent with findings 

highlighting the role of conceptual learning in face recognition (Gordon 
& Tanaka, 2011; Yovel et al., 2012). The current findings bolster these 
face perception models, providing novel evidence that the process of 
perceiving facial identity is dynamically constructed not only by the 
visual processing of a face but also our own social-conceptual associa-
tions. The results add to a growing body of research demonstrating a 
variety of social-conceptual impacts on face perception. Studies have 
shown that one’s stereotypes affect social category perception from 
faces (Johnson, Freeman, & Pauker, 2012; Stolier & Freeman, 2016), 
one’s emotion concepts affect the perception of facial expressions 
(Brooks et al., 2019; Brooks & Freeman, 2018; Carroll & Young, 2005; 
Lindquist, Gendron, Barrett, & Dickerson, 2014), and one’s personality 
concepts affect trait impressions from faces (Oh, Martin, & Freeman, 
2021; Stolier et al., 2020; Stolier, Hehman, Keller, Walker, & Freeman, 
2018). Moreover, neural decoding studies suggest that these social- 
conceptual impacts reach relatively early levels in the perceptual rep-
resentation of faces (Brooks et al., 2019; Stolier & Freeman, 2016). 

The present studies are not without their limitations. While the 
mousetracking and reverse correlation approaches aim to provide a 
window into the perceptual process of recognizing facial identity and 
how facial identity is perceptually represented, neither of these mea-
sures can be considered a “pure” measure of perception. The potential 
roles of attentional or post-perceptual decision processes also cannot be 
excluded. Particularly for the mousetracking data, it is possible that 
conceptual influences occur at higher levels of processing than are hy-
pothesized here (De Falco, Ison, Fried, & Quiroga, 2016). Combining our 
current approach with neural decoding techniques could help better 
identify at which levels of representation these effects manifest 
(Freeman et al., 2018). We should also note that, although our focus 
here is on person knowledge in the form of impressions of others’ per-
sonality traits, we would argue that any form of person knowledge (e.g., 
occupation, situational information about a person) would be a candi-
date for the effects observed. Although it is plausible that the pairwise 
conceptual ratings were additionally influenced by these other factors 
(as they indexed person knowledge globally), our direct measurement of 
participants’ impressions of the 15 personality traits and our manipu-
lation of these impressions are unlikely to have been influenced by these 
factors. Thus, while a trial involving Bill Clinton and Vladimir Putin, for 
example, in theory may have led to stronger perceptual similarity than a 
trial involving Justin Bieber and Vladimir Putin due to extraneous 
person-knowledge factors such as a congruent occupation (e.g., politics), 
our direct measurement of the 15 personality trait impressions and 
manipulation of those impressions provide strong evidence for the 
specific impact of personality impressions on perception. Nevertheless, 
as just mentioned, these additional forms of person knowledge are 
certainly consistent with our overall theoretical account, and future 
work could examine these additional factors’ impact on perception 
directly. 

A caveat is also due regarding any pure delineation between the 
conceptual knowledge of targets’ personality and the perceptual pro-
cessing of their facial appearance. These are not fully independent, as 
facial appearance can have complex influences on one’s personality just 
as one’s personality can have complex influences on facial appearance 
(Zebrowitz & Collins, 1997; Zebrowitz, Collins, & Dutta, 1998). With 
respect to measurement, it is plausible that participants’ conceptual 
similarity ratings (person similarity and trait ratings) may have been 
implicitly influenced by facial appearance, raising the possibility of a 
bottom-up perceptual confound. However, the nature of our statistical 
analyses ensured that there were meaningful individual differences in 
conceptual similarity that manifested as corresponding differences in 
identity perception; such findings cannot be explained by bottom-up 
perceptual confounds in facial appearance that would be identical 
across participants. Moreover, the inclusion of multiple visual similarity 
estimates as covariates in the regression analyses additionally casts 
doubt on the idea that facial appearance may have confounded the ef-
fects of interest. Finally, in the only study involving unfamiliar faces 
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(where trait-related facial appearance estimates are valid, unlike with 
familiar faces), conceptual knowledge was found to affect perceptual 
representations of faces even when statistically controlling for trait- 
related facial appearance. Together, our results suggest that the effects 
of person knowledge on facial identity perception cannot be explained 
by bottom-up perceptual confounds in facial appearance alone. 

We also expect the observed effects to be bound by context (e.g., 
biasing effects toward identities that are currently accessible due to 
context) and, in the case of the mousetracking study, to be temporary. 
Past mousetracking studies have suggested that even temporary biases 
during the early moments of face perception may have lingering 
downstream social consequences (for review, Freeman & Johnson, 
2016). Indeed, previous research suggests that it is possible that the 
biasing effects of person knowledge on facial identity perception may 
bear downstream consequences. Impressions of a person’s personality 
are transmitted to a novel identity when the two individuals’ faces 
resemble one another, as revealed via behavioral (e.g., impressions of 
trustworthiness, decisions to trust) and neural measures (e.g., amygdala 
activation) (FeldmanHall et al., 2018; Verosky & Todorov, 2010, 2013). 
When a perceiver’s person knowledge biases a face to appear more 
similar to the face of an unrelated individual, such biased resemblance in 
appearance could in turn affect how we feel and think about the new 
individual. 

The current findings highlight both the benefit and costs of the 
impact of person knowledge on social behavior. Social judgments are an 
effortless, largely uncontrollable, and highly efficient process. 
Perceiving faces of different individuals similarly when they share 
similar personality may facilitate an efficient storage of social infor-
mation and promote adaptive interpersonal behavior (e.g., a quick de-
cision to help someone or not when their face resembles a close friend). 
On the other hand, the perceptual overlap between identities induced by 
conceptual similarity between them could cause unwanted confusion 
due to the diminished precision in facial representation. Thus, although 
we argue that the effects of person knowledge on facial identity 
perception are a byproduct of more domain-general interactive visual 
processing (Freeman et al., 2020) (and such processing affords clear 
evolutionary advantages, e.g., Gilbert & Li, 2013), the effects demon-
strated here are likely to function adaptively in some contexts while 
maladaptively in others. Future research could investigate to what 
extent the social-conceptual scaffolding of facial identity perception 
may translate into cognitive, affective, and behavioral consequences out 
in the social world, for better or for worse. 
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